Skip to main content
Log in

Cauchy problem for a semilinear Éidel’man parabolic equation

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish conditions for the existence and uniqueness of a generalized solution of the Cauchy problem for the equation

$$ \begin{aligned} & u_{t} + {\sum\limits_{{\left| \alpha \right|} = {\left| \beta \right|} = 2} {{\left( { - 1} \right)}^{{{\left| \alpha \right|}}} \;D^{\alpha }_{x} {\left( {a_{{\alpha \beta }} {\left( {z,\;t} \right)}D^{\beta }_{x} u} \right)}} } \\ & \;\;\; - {\sum\limits_{{\left| \alpha \right|} = {\left| \beta \right|} = 1} {{\left( { - 1} \right)}^{{{\left| \alpha \right|}}} \;D^{\alpha }_{y} {\left( {b_{{\alpha \beta }} {\left( {z,\;t} \right)}D^{\beta }_{y} u} \right)}} } + {\sum\limits_{{\left| \alpha \right|} = 1} {c_{\alpha } {\left( {z,\;t} \right)}D^{\alpha }_{z} u + c{\left( {z,\,t,\,u} \right)}} } \\ & \quad \quad \quad \quad \quad = {\sum\limits_{{\left| \alpha \right|} \leq 2} {{\left( { - 1} \right)}^{{{\left| \alpha \right|}}} D^{\alpha }_{x} f_{\alpha } {\left( {z,\;t} \right)} - {\sum\limits_{{\left| \alpha \right|} = 1} {D^{\alpha }_{y} g_{\alpha } {\left( {z,\;t} \right)}} }} } \\ \end{aligned} $$

in a Tikhonov-type class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. S. D. Éidel’man, “On one class of parabolic systems,” Dokl. Akad. Nauk SSSR, 133, No. 1, 40–43 (1960).

    Google Scholar 

  2. M. I. Matiichuk, “Fundamental matrices of solutions of generalized {ie690-01}-parabolic and {ie690-02}-elliptic systems whose coefficients satisfy the integral Hölder condition,” Dopov. Akad. Nauk Ukr. RSR, No. 8, 1010–1013 (1964).

  3. S. D. Éidel’man, Parabolic Systems [in Russian], Nauka, Moscow (1964).

    Google Scholar 

  4. M. I. Matiichuk and S. D. Éidel’man, “On fundamental solutions and Cauchy problem for parabolic systems whose coefficients satisfy the Dini condition,” Tr. Sem. Funkts. Anal., Issue 9, 54–83 (1967).

    Google Scholar 

  5. S. D. Ivasishen and S. D. Éidel’man, “{ie690-03}-parabolic systems,” Tr. Sem. Funkts. Anal., Issue 1, 3–175, 271–273 (1968).

  6. M. D. Martynenko and D. F. Boiko, “{ie690-04}-parabolic boundary-value problems,” Differents. Uravn., 14, No. 12, 2212–2222 (1978).

    MATH  MathSciNet  Google Scholar 

  7. S. D. Ivasishen, “Integral representation and initial values of solutions of {ie690-05}-parabolic systems,” Ukr. Mat. Zh., 42, No. 4, 500–506 (1990).

    Article  MathSciNet  Google Scholar 

  8. L. P. Berezan and S. D. Ivasishen, “Fundamental matrix of solutions of the Cauchy problem for {ie690-06}-parabolic systems with degeneration on the initial hyperplane,” Dopov. Nats. Akad. Nauk Ukr., No. 12, 7–12 (1998).

  9. L. P. Berezan and S. D. Ivasyshen, “On {ie690-07}-parabolic systems strongly degenerate on the initial hyperplane,” Visn. Univ. “L’viv. Politekh.,” Ser. Prikl. Mat., No. 337, 73–76 (1998).

  10. M. I. Matiichuk, Parabolic Singular Boundary-Value Problems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (1999).

    Google Scholar 

  11. S. D. Ivasyshen and H. S. Pasichnyk, “On the fundamental matrix of solutions of the Cauchy problem for dissipative {ie690-08}-parabolic systems with degeneration on the initial hyperplane,” Dopov. Nats. Akad. Nauk Ukr., No. 6, 18–22 (1999).

    Google Scholar 

  12. H. S. Pasichnyk, “On the fundamental matrix of solutions of the Cauchy problem for dissipative {ie690-09}-parabolic systems,” Visn. L’viv. Univ., Ser. Mekh.-Mat., Issue 54, 140–151 (1999).

  13. H. S. Pasichnyk, “On the solvability of the Cauchy problem for {ie690-10}-parabolic systems with increasing coefficients,” Mat. Met. Fiz.-Mekh. Polya, 42, No. 3, 61–65 (1999).

    MATH  Google Scholar 

  14. L. P. Berezan, “Integral representation of solutions of a generalized Cauchy problem for a {ie690-11}-parabolic system strongly degenerate on the initial hyperplane,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 46, 13–18 (1999).

  15. L. P. Berezan, “Some properties of the fundamental matrix of solutions of the Cauchy problem for {ie690-12}-parabolic systems with degeneration on the initial hyperplane,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 76, 5–10 (2000).

  16. S. D. Ivasyshen and H. S. Pasichnyk, “On the Cauchy problem for {ie690-13}-parabolic systems with increasing coefficients,” Ukr. Mat. Zh., 52, No. 11, 1484–1496 (2000).

    Article  MATH  Google Scholar 

  17. S. D. Ivasyshen and H. S. Pasichnyk, “On the fundamental matrix of solutions of the Cauchy problem for one class of parabolic systems with unbounded coefficients and degeneration on the initial hyperplane,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 76, 82–91 (2000).

    Google Scholar 

  18. S. D. Ivasyshen and O. S. Kondur, “On the Green matrix of the Cauchy problem and characterization of certain classes of solutions for {ie691-01}-parabolic systems of arbitrary order,” Mat. Stud., 14, No. 1, 73–84 (2000).

    MathSciNet  Google Scholar 

  19. T. M. Balabushenko, “Estimates for the fundamental matrix of solutions of the Cauchy problem for {ie691-02}-parabolic systems in domains unbounded with respect to the time variable and their applications,” Visn. Nats. Univ. “L’viv. Politekh.,” Ser. Prikl. Mat., No. 411, 6–11 (2000).

  20. T. M. Balabushenko, “On estimates for the fundamental matrix of solutions of the Cauchy problem for {ie691-03}-parabolic systems in domains unbounded with respect to the time variable,” Mat. Stud., 17, No. 2, 163–174 (2002).

    MATH  MathSciNet  Google Scholar 

  21. T. M. Balabushenko and S. D. Ivasyshen, “On properties of solutions of {ie691-04}-parabolic systems in domains unbounded with respect to the time variable,” Mat. Met. Fiz.-Mekh. Polya, 45, No. 4, 19–26 (2002).

    MATH  Google Scholar 

  22. F. Bernis, “Qualitative properties for some nonlinear higher-order degenerate parabolic equations,” Houston J. Math., 14, No. 3, 319–352 (1988).

    MATH  MathSciNet  Google Scholar 

  23. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations [Russian translation], Inostrannaya Literatura, Moscow (1958).

    Google Scholar 

  24. H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen [Russian translation], Mir, Moscow (1978).

    Google Scholar 

  25. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires [Russian translation], Mir, Moscow (2002).

    Google Scholar 

  26. O. A. Oleinik and E. V. Radkevich, “Parameter-introduction method for the investigation of evolution equations,” Usp. Mat. Nauk, 33, Issue 5, 7–72 (1978).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 5, pp. 586–602, May, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkuna, O.E. Cauchy problem for a semilinear Éidel’man parabolic equation. Ukr Math J 60, 671–691 (2008). https://doi.org/10.1007/s11253-008-0081-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-008-0081-0

Keywords

Navigation