Skip to main content
Log in

Inverse Sturm-Liouville problem on a figure-eight graph

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the inverse problem for the Strum-Liouville equation on a graph that consists of two quasione-dimensional loops of the same length having a common vertex. As spectral data, we consider the set of eigenvalues of the entire system together with the sets of eigenvalues of two Dirichlet problems for the Sturm-Liouville equations with the condition of total reflection at the vertex of the graph. We obtain conditions for three sequences of real numbers that enable one to reconstruct a pair of real potentials from L 2 corresponding to each loop. We give an algorithm for the construction of the entire set of potentials corresponding to this triple of spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. I. Gerasimenko and B. S. Pavlov, “Scattering problem on a noncompact graph,” Teor. Mat. Fiz., 74, 345–359 (1988).

    MathSciNet  Google Scholar 

  2. J. Gratus, C. J. Lambert, S. J. Robinson, and R. W. Tucker, “Quantum mechanics on graphs,” J. Phys. A, 27, 6881–6892 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Exner, “Weakly coupled states on branching graphs,” Lett. Math. Phys., 38, 313–320 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Exner, “Magnetoresonances on a lasso graph,” Found. Phys., 27, 171–190 (1997).

    Article  MathSciNet  Google Scholar 

  5. R. Carlson, “Inverse eigenvalue problems on directed graphs,” Trans. Amer. Math. Soc., 351, No. 10, 4069–4088 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Exner and E. Seresova, “Appendix resonances on a simple graph,” J. Phys. A, 27, 8269–8278 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  7. Yu. B. Melnikov and B. S. Pavlov, “Two-body scattering on a graph and application to simple nanoelectronic devices,” J. Math. Phys., 36, 2813–2838 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  8. Yu. B. Melnikov and B. S. Pavlov, “Scattering on graphs and one-dimensional approximations to N-dimensional Schrödinger operators,” J. Math. Phys., 42, 1202–1228 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Kuchment, “Quantum graphs: I. Some basic structures,” in: Wave Random Media, Vol. 14 (2004), pp. 107–128.

    Article  MathSciNet  Google Scholar 

  10. J. von Below, “Can one hear the shape of a network?,” in: Partial Differential Equations on Multistructures, Marcel Dekker, New York-Basel (2001), pp. 21–37.

    Google Scholar 

  11. B. Gutkin and U. Smilansky, “Can one hear the shape of a graph?,” J. Phys. A, 34, No. 31, 6061–6068 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Kurasov and F. Stenberg, “On the inverse scattering problem on branching graphs,” J. Phys. A, 35, No. 1, 101–121 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  13. N. I. Gerasimenko, “Inverse scattering problem on a noncompact graph,” Teor. Mat. Fiz., 75, 187–200 (1988).

    MathSciNet  Google Scholar 

  14. V. Pivovarchik, “Scattering in a loop-shaped waveguide,” Operator Theory: Adv. Appl., 124, 527–543 (2001).

    MathSciNet  Google Scholar 

  15. V. Pivovarchik, “Inverse problem for the Sturm-Liouville equation on a simple graph,” SIAM J. Math. Anal., 32, No. 4, 801–819 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. S. Harmer, “Inverse scattering for the matrix Schrödinger operator and Schrödinger operator on graphs with general self-adjoint boundary conditions,” ANZIAM J., 44, No. 1, 161–168 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  17. Z. S. Agranovich and V. A. Marchenko, Inverse Scattering Problem [in Russian], Kharkov University, Kharkov (1960).

    Google Scholar 

  18. E. I. Bondarenko and F. S. Rofe-Beketov, “Inverse scattering problem on a semiaxis for a system with triangular matrix potential,” Mat. Fiz. Anal. Geom., 10, No. 3, 412–424 (2003).

    MATH  MathSciNet  Google Scholar 

  19. V. A. Marchenko, Sturm-Liouville Operators and Their Applications [in Russian], Naukova Dumka, Kiev (1977).

    MATH  Google Scholar 

  20. V. Pivovarchik, “An inverse Sturm-Liouville problem by three spectra,” Integral Equat. Operator Theory, 34, 234–243 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  21. I. S. Kats and M. G. Krein, “R-functions are analytic functions that map the upper half-plane into itself,” in: F. V. Atkinson, Discrete and Continuous Boundary Problems [Russian translation], Appendix 1, Mir, Moscow (1968).

    Google Scholar 

  22. B. Ya. Levin, Distribution of Zeros of Entire Functions, American Mathematical Society, Providence, RI (1980).

    Google Scholar 

  23. B. Ya. Levin and Yu. I. Lyubarskii, “On weak perturbations of the set of roots of sine-type functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 43, No. 1, 87–110 (1979).

    MathSciNet  Google Scholar 

  24. B. Ya. Levin and Yu. I. Lyubarskii, “Interpolation of special classes by entire functions and related expansions of components in series,” Izv. Akad. Nauk SSSR, Ser. Mat., 39, No. 3, 657–702 (1975).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 60, No. 9, pp. 1168–1188, September, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomilko, A.M., Pivovarchik, V.N. Inverse Sturm-Liouville problem on a figure-eight graph. Ukr Math J 60, 1360–1385 (2008). https://doi.org/10.1007/s11253-009-0145-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-009-0145-9

Keywords

Navigation