Skip to main content
Log in

A property of the β-Cauchy-type integral with continuous density

  • Published:
Ukrainian Mathematical Journal Aims and scope

A theorem from the classical complex analysis proved by Davydov in 1949 is extended to the theory of solution of a special case of the Beltrami equation in the z-complex plane (i.e., null solutions of the differential operator \(\partial _{{\overline{z} }} - {\upbeta} \frac{Z}{{\overline{Z} }}\partial _{z} ,\;0 \leq {\upbeta} < 1\)).

It is proved that if γ is a rectifiable Jordan closed curve and f is a continuous complex-valued function on γ such that the integral

$${\int\limits_{{\upgamma}\backslash {\left\{ {{\upzeta} \in {\upgamma} :{\left| {{\upzeta} - t} \right|} \leq r} \right\}}} {\frac{{{\left| {f{\left( {\upzeta} \right)} - f{\left( t \right)}} \right|}}}{{{\left| {{\upzeta} - t{\left| {t \mathord{\left/ {\vphantom {t {\upzeta}}} \right. \kern-\nulldelimiterspace} {\upzeta}} \right|}^{{\uptheta}} } \right|}}}{\left| {{\left( {n{\left( {\upzeta} \right)} - {\upbeta} \frac{{\upzeta}}{{\overline{{\upzeta}} }}\overline{n} {\left( {\upzeta} \right)}} \right)}} \right|}ds,\quad {\uptheta} = \frac{{2{\upbeta}}}{{1 - {\upbeta}}},} }$$

converges uniformly on γ as r → 0, where n(ζ) is the unit vector of outer normal on γ at a point ζ and ds is the differential of arc length, then the β-Cauchy-type integral

$$\frac{1}{{2{\left( {1 - {\upbeta} } \right)}{\uppi} }}{\int\limits_{\mathrm \gamma} {\frac{{f{\left( {\upzeta} \right)}}}{{{\upzeta} - z{\left| {z \mathord{\left/ {\vphantom {z {\upzeta} }} \right. \kern-\nulldelimiterspace} {\upzeta} } \right|}^{\uptheta } }}{\left( {n{\left( {\upzeta} \right)} - {\upbeta} \frac{{\upzeta} }{{\overline{{\upzeta} } }}\overline{n} {\left( {\upzeta} \right)}} \right)}ds,\quad z \notin {\upgamma} ,} }$$

admits a continuous extension to γ and a version of the Sokhotski–Plemelj formulas holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Begehr, Complex Analytic Methods for Partial Differential Equations. An Introductory Text, World Scientific, River Edge, NJ (1994).

    MATH  Google Scholar 

  2. B. Bojarski, “Old and new on Beltrami equations,” Functional Analytic Methods in Complex Analysis and Applications to Partial Differential Equations: Proc. of the ICTP (February, 8–19, 1988, Trieste, Italy), (1988), pp. 173–187.

  3. T. Iwaniec and G. Martin, “What’s new for the Beltrami equation?,” Geometric Analysis and Applications: Proc. Centre Math. Appl. Austral. Nat. Univ. (Canberra, 2000), 39, 132–148 (2001).

    MathSciNet  Google Scholar 

  4. A. Tungatarov, “Properties of an integral operator in classes of summable functions,” Izv. Akad. Nauk Kazakh. SSR, Ser. Fiz.-Mat., No. 5, 58–62 (1985).

  5. F. D. Gakhov, Boundary-Value Problems [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  6. N. I. Muskhelishvili, Singular Integral Equations. Boundary-Value Problems in the Theory of Functions and Their Applications in Mathematical Physics, 3 rd edition [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  7. N. A. Davydov, “On the continuity of an integral of Cauchy type in a closed region,” Dokl. Akad. Nauk SSSR, 64, 759–762 (1949).

    MATH  MathSciNet  Google Scholar 

  8. V. V. Salaev and A. O. Tokov, “Necessary and sufficient conditions for the continuity of the Cauchy integral in a closed domain,” Dokl. Akad. Nauk Azerb. SSR., 39, No. 12, 7–11 (1983).

    MathSciNet  Google Scholar 

  9. R. Abreu Blaya, J. Bory Reyes, O. Gerus, and M. Shapiro, “The Clifford–Cauchy transform with a continuous density: N. Davydov theorem,” Math. Meth. Appl. Sci., 28, No. 7, 811–825 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Abreu Blaya, J. Bory Reyes, and M. Shapiro, “On the Laplacian vector fields theory in domains with rectifiable boundary,” Math. Meth. Appl. Sci., 29, No. 15, 1861–1881 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  11. O. Gerus and M. Shapiro, “On a Cauchy-type integral related to the Helmholtz operator in the plane,” Bol. Soc. Mat. Mexicana, 3, No. 10, 63–82 (2004).

    MathSciNet  Google Scholar 

  12. B. A. Kats, “A generalization of a theorem of N. A. Davydov,” Dokl. Ros. Akad. Nauk, 374, No. 4, 443–444 (2000); English translation: Dokl. Math., 62, 220–221 (2000).

    MathSciNet  Google Scholar 

  13. B. A. Kats, “On a generalization of a theorem of N. A. Davydov,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 1, 39–44 (2002); English translation: Russian Math., 46, No. 1, 37–42 (2002).

  14. R. Abreu Blaya, D. Peña Peña, and J. Bory Reyes, “On the jump problem for β-analytic functions,” Compl. Var. Theory Ellipt. Equat., 51, No. 8–11, 763–775 (2006).

    Article  MATH  Google Scholar 

  15. J. Bory Reyes and D. Peña Peña, “Some higher order Cauchy–Pompeiu integral representations,” Int. Trans. Spec. Funct., 16, No. 8, 615–624 (2005).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bory Reyes.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 11, pp. 1443–1448, November, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abreu Blaya, R., Bory Reyes, J. A property of the β-Cauchy-type integral with continuous density. Ukr Math J 60, 1683–1690 (2008). https://doi.org/10.1007/s11253-009-0162-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-009-0162-8

Keywords

Navigation