Skip to main content

Advertisement

Log in

Evolution inequalities with noncoercive \(w_{{{\rm{\lambda}}_{0}}}\)-pseudomonotone volterra-type mappings

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider a class of differential-operator inequalities with noncoercive \(w_{{{\rm{\lambda}}_{0}}}\)-pseudomonotone operators. The problem of existence of a solution of the Cauchy problem for these inequalities is investigated by the Dubinskii method. A priori estimates for these solutions and their derivatives are established. A model example illustrating the accumulated results is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. A. Tolstonogov, “On the solutions of evolutionary inclusions. I,” Sib. Mat. Zh., 33, No. 3, 145–162 (1992).

    MathSciNet  Google Scholar 

  2. A. A. Tolstonogov and Yu. N. Umanskii, “On the solutions of evolutionary inclusions. II,” Sib. Mat. Zh., 33, No. 4, 163–174 (1992).

    MATH  MathSciNet  Google Scholar 

  3. A. N. Vakulenko and V. S. Mel’nyk, “Topological method for operator inclusions with dense-definite mappings in Banach spaces,” Nelin. Hran. Zad., No. 10, 125–142 (2000).

    Google Scholar 

  4. A. N. Vakulenko and V. S. Mel’nyk, “Solvability and properties of solutions of one class of operator inclusions in Banach spaces,” Nauk. Visti NTUU “KPI,” No. 3, 105–112 (1999).

  5. A. N. Vakulenko and V. S. Mel’nyk, “One class of operator inclusions in Banach spaces,” Dopov. Nats. Akad. Nauk Ukr., No. 8, 20–25 (1998).

    Google Scholar 

  6. P. O. Kas’yanov, “Galerkin’s method for a class of differential-operator inclusions with multivalued mappings of pseudomonotone type,” Nauk. Visti NTUU “KPI,” No. 2, 139–151 (2005).

  7. P. O. Kas’yanov, “Faedo–Galerkin method for one class of differential-operator inclusions,” Dopov. Nats. Akad. Nauk Ukr., No. 9, 20–24 (2005).

    Google Scholar 

  8. P. O. Kas’yanov and V. S. Mel’nyk, “Faedo–Galerkin method for differential-operator inclusions in Banach spaces with mappings of the \(w_{{{\rm{\lambda}}_{0}}}\)-pseudomonotone type,” in: Collection of Works, 2, No. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2005), pp. 103–126.

    Google Scholar 

  9. P. O. Kasyanov and V. S. Mel’nik, “Differential-operator inclusions in Banach spaces with W λ-pseudomonotone maps,” Nelin. Hran. Zad., No. 16, 46–68 (2006).

    Google Scholar 

  10. P. O. Kasyanov, V. S. Mel’nik, and L. Toscano, “Method of approximation of evolutionary inclusions and variational inequalities by stationary,” Sys. Res. Inf. Tech., No. 4, 106–119 (2005).

  11. Yu. A. Dubinskii, “Nonlinear elliptic and parabolic equations,” Itogi VINITI, Ser. Contemporary Problems in Mathematics [in Russian], 9, VINITI, Moscow (1976), pp. 5–130.

    Google Scholar 

  12. H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie, Berlin (1974).

    MATH  Google Scholar 

  13. M. Reed and B. Simon, Methods of Modern Mathematical Physics. 1. Functional Analysis, Academic Press, New York (1972).

    MATH  Google Scholar 

  14. M. Z. Zgurovskii, V. S. Mel’nik, and A. N. Novikov, Applied Methods of Analysis and Control Over Nonlinear Processes and Fields, [in Russian], Naukova Dumka, Kiev (2004).

    Google Scholar 

  15. I. V. Skrypnik, Methods for the Investigation of Nonlinear Elliptic Boundary-Value Problems [in Russian], Nauka, Moscow (1990).

    MATH  Google Scholar 

  16. V. S. Mel’nik, “Multivariational inequalities and operator inclusions in Banach spaces with mappings of the class (S)+,” Ukr. Mat. Zh., 52, No. 11, 1513–1523 (2000).

    MATH  MathSciNet  Google Scholar 

  17. J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York (1984).

    MATH  Google Scholar 

  18. V. S. Mel’nik, “Topological methods in the theory of operator inclusions in Banach spaces. I,” Ukr. Mat. Zh., 58, No. 2, 184–194 (2006); “Topological methods in the theory of operator inclusions in Banach spaces. II,” Ukr. Mat. Zh., 58, No. 4, 505–521 (2006).

    MATH  MathSciNet  Google Scholar 

  19. J.-L. Lions, Quelques Máthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris (1969).

    Google Scholar 

  20. P. O. Kas’yanov and V. S. Mel’nyk, “On the properties of subdifferential mappings in the Fréchet spaces,” Ukr. Mat. Zh., 57, No. 10, 1385–1394 (2005).

    MATH  Google Scholar 

  21. Z. Denkowski, S. Migorski, and N. S. Papageorgiou, An Introduction to Nonlinear Analysis. Applications, Kluwer, Boston–Dordrecht–London (2003).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased (V. S. Mel’nyk).

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 11, pp. 1499–1519, November, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kas’yanov, P.O., Mel’nyk, V.S. Evolution inequalities with noncoercive \(w_{{{\rm{\lambda}}_{0}}}\)-pseudomonotone volterra-type mappings. Ukr Math J 60, 1752–1777 (2008). https://doi.org/10.1007/s11253-009-0167-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-009-0167-3

Keywords

Navigation