Skip to main content
Log in

Littlewood–Paley theorem on spaces L p(t)(ℝn)

  • Brief Communications
  • Published:
Ukrainian Mathematical Journal Aims and scope

We point out that if the Hardy–Littlewood maximal operator is bounded on the space L p(t)(ℝ), 1 < ap(t) ≤ b < ∞, t ∈ ℝ, then the well-known characterization of the spaces L p(ℝ), 1 < p < ∞, by the Littlewood–Paley theory extends to the space L p(t)(ℝ). We show that, for n > 1 , the Littlewood–Paley operator is bounded on L p(t) (ℝn), 1 < ap(t) ≤ b < ∞, t ∈ ℝn, if and only if p(t) = const.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970).

    MATH  Google Scholar 

  2. A. Zygmund, Trigonometric Series, Cambridge University Press, London–New York (1959).

    MATH  Google Scholar 

  3. L. Diening, “Maximal function on generalized Lebesgue spaces L p(∙),” Math. Inequal. Appl., 7, No. 2, 245–253 (2004).

    MATH  MathSciNet  Google Scholar 

  4. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Perez, “The boundedness of classical operators on variable L p spaces,” Ann. Acad. Sci. Fenn. Math., 31, 239–264 (2006).

    MathSciNet  Google Scholar 

  5. D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, “The maximal function on variable L p spaces,” Ann. Acad. Sci. Fenn. Math., 28, 223–238 (2003); 29, 247–249 (2004).

    MATH  MathSciNet  Google Scholar 

  6. A. Nekvinda, “Hardy–Littlewood maximal operator on L p(x) (R n),” Math. Inequal. Appl., 7, 255–265 (2004).

    MATH  MathSciNet  Google Scholar 

  7. T. S. Kopaliani, “Infinitesimal convolution and Muckenhoupt A p(∙) condition in variable L p spaces,” Arch. Math., 89, No. 2, 185–192 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Diening, “Maximal function on Orlicz–Musielak spaces and generalized Lebesgue spaces,” Bull. Sci. Math., 129, 657–700 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Jessen, J. Marcinkiewicz, and A. Zygmund, “Note on the differentiability of multiple integrals,” Fund. Math., 25, 217–234 (1935).

    Google Scholar 

  10. L. Diening, P. Hästö, and A. Nekvinda, “Open problems in variable exponent Lebesgue and Sobolev spaces,” in: P. Drábek and J. Rákosník (editors), Proceedings of the Conference “Function Spaces, Differential Operators and Nonlinear Analysis,” Mathematical Institute, Academy of Sciences of Czech Republic, Prague (2004), pp. 38–58.

    Google Scholar 

  11. O. Kováčik and J. Rákosník, “On spaces L p(t) and W k, p(x),” Czech. Math. J., 41, No. 4, 592–618 (1991).

    Google Scholar 

  12. D. S. Kurtz, “Littlewood–Paley and multiplier theorems on weighted L p spaces,” Trans. Amer. Math. Soc., 259, 235–254 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  13. E. M. Stein, “Classes H p, multiplicateurs et fonctions de Littlewood–Paley,” C. R. Acad. Sci., 263, 716–719, 780–781 (1966).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 12, pp. 1709–1715, December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopaliani, T.S. Littlewood–Paley theorem on spaces L p(t)(ℝn). Ukr Math J 60, 2006–2014 (2008). https://doi.org/10.1007/s11253-009-0186-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-009-0186-0

Keywords

Navigation