Skip to main content
Log in

Dynamical systems and simulation of turbulence

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We propose an approach to the analysis of turbulent oscillations described by nonlinear boundary-value problems for partial differential equations. This approach is based on passing to a dynamical system of shifts along solutions and uses the notion of ideal turbulence (a mathematical phenomenon in which an attractor of an infinite-dimensional dynamical system is contained not in the phase space of the system but in a wider functional space and there are fractal or random functions among the attractor “points”). A scenario for ideal turbulence in systems with regular dynamics on an attractor is described; in this case, the space-time chaotization of a system (in particular, intermixing, self-stochasticity, and the cascade process of formation of structures) is due to the very complicated internal organization of attractor “points” (elements of a certain wider functional space). Such a scenario is realized in some idealized models of distributed systems of electrodynamics, acoustics, and radiophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Avila, M. Lyubich, and W. de Melo, “Regular or stochastic dynamics in real analytic families of unimodal maps,” Invent. Math., 154, 451–550 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  3. M. Born, “Vorhersagbarkeit in der klassichen Mechanik,” Z. Phys., 153, 372–388 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. A. Vitt, “On the theory of a violin string,” Zh. Tekhn. Fiz., 6, No. 9, 1459–1479 (1936).

    Google Scholar 

  5. K. L. Cooke and D. Krumme, “Differential difference equations and nonlinear initial-boundary-value problems for linear hyperbolic differential equations,” J. Math. Anal. Appl., 24, 372–387 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  6. N. S. Krylov, Works on the Substantiation of Statistical Physics [in Russian], Academy of Sciences of the USSR, Moscow-Leningrad (1950).

    Google Scholar 

  7. O. A. Ladyzhenskaya, “On the determination of a global attractor for the Navier-Stokes equation and other partial differential equations,” Usp. Mat. Nauk, 42, No. 6, 25–60 (1987).

    MathSciNet  Google Scholar 

  8. K. A. Lukin, Yu. L. Maistrenko, A. N. Sharkovsky, and V. P. Shestopalov, “Nonlinear difference equations with two argument deviations in the electro-dynamics problems,” in: Proceedings of the IVth International Workshop “Plasma Theory and Nonlinear and Turbulent Processes in Physics” [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  9. K. A. Lukin, Yu. L. Maistrenko, A. N. Sharkovskii, and V. P. Shestopalov, “Method of difference equations in the resonance problem with nonlinear reflection,” Dokl. Akad. Nauk SSSR, 309, No. 2, 327–331 (1989).

    MathSciNet  Google Scholar 

  10. M. Lyubich, “Almost any real quadratic map is either regular or stochastic,” Ann. Math., 156, 1–78 (2002).

    MATH  MathSciNet  Google Scholar 

  11. Yu. L. Maistrenko, V. L. Maistrenko, S. I. Vikul, and L. O. Chua, “Bifurcations of attracting cycles from time-delayed Chua’s circuit,” Int. J. Bifurcation Chaos, 5, No. 3, 653–671 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  12. Yu. L. Maistrenko, E. Yu. Romanenko, and A. N. Sharkovsky, “Attractors of difference equations and turbulence,” in: Proceedings of the IIIrd International Workshop “Plasma Theory and Nonlinear and Turbulent Processes in Physics,” World Scientific, Singapore (1988), pp. 520–536.

    Google Scholar 

  13. J. Milnor, “On the concept of attractor,” Commun. Math. Phys., 99, 177–195 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Nagumo and M. Shimura, “Self-oscillation in a transmission line with a tunnel diode,” Proc. IEEE, 49, 1281–1291 (1961).

    Google Scholar 

  15. H. O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer, New York (1993).

    Google Scholar 

  16. E. Yu. Romanenko, “On attractors of continuous time difference equations,” Comput. Math. Appl., 36, No. 10–12, 377–390 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Yu. Romanenko, “Dynamical systems induced by continuous time difference equations and long-time behavior of solutions,” Int. J. Difference Equat. Appl., 9, No. 3–4, 263–280 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  18. O. Yu. Romanenko, “Dynamical systems generated by difference equations with continuous time,” in: Proceedings of the Ukrainian Mathematical Congress, Dynamical Systems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2003), pp. 93–104.

    Google Scholar 

  19. E. Yu. Romanenko, “Dynamics of neighborhoods of points in the case of continuous mapping of an interval,” Ukr. Mat. Zh., 57, No. 11, 534–547 (2005).

    MathSciNet  Google Scholar 

  20. O. Yu. Romanenko, “Phenomenon of self-stochasticity in dynamical systems generated by difference equations with continuous argument,” Ukr. Mat. Zh., 58, No. 7, 954–975 (2006).

    MATH  MathSciNet  Google Scholar 

  21. E. Yu. Romanenko and A. N. Sharkovsky, “Formation of structures and autostochasticity in distributive systems,” in: Proceedings of the IVth International Workshop “Nonlinear and Turbulent Processes in Physics,” Vol. 2, Naukova Dumka, Kiev (1989), pp. 416–419.

    Google Scholar 

  22. O. Yu. Romanenko and O. M. Sharkovs’kyi, “From one-dimensional to infinite-dimensional dynamical systems: ideal turbulence,” Ukr. Mat. Zh., 48, No. 12, 1604–1627 (1996).

    Article  Google Scholar 

  23. E. Yu. Romanenko and O. N. Sharkovsky, “From boundary value problems to difference equations: A method of investigation of chaotic vibrations,” Int. J. Bifurcation Chaos, 9, No. 7, 1285–1306 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Yu. Romanenko, A. N. Sharkovsky, and M. B. Vereikina, “Self-structuring and self-similarity in boundary value problems,” Int. J. Bifurcation Chaos, 5, No. 5, 145–156 (1999).

    MathSciNet  Google Scholar 

  25. E. Yu. Romanenko, A. N. Sharkovsky, and M. B. Vereikina, “Self-stochasticity in deterministic boundary value problems,” Nonlin. Bound. Val. Probl., 9, 174–184 (1999).

    MATH  Google Scholar 

  26. V. V. Fedorenko, “Topological limit of trajectories of an interval of the simplest one-dimensional dynamical systems,” Ukr. Mat. Zh., 54, No. 3, 425–430 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  27. A. N. Sharkovskii, “Oscillations described by autonomous difference and differential-difference equations,” in: Proceedings of the VIIIth International Conference on Nonlinear Oscillations, Vol. 2, Academia, Prague (1979), pp. 1073–1078.

    Google Scholar 

  28. A. N. Sharkovsky, “’Dry’ turbulence,” in: Short Comm. Int. Congr. Math., Vol. 10, Warsaw (12) (1983), p. 4.

    Google Scholar 

  29. A. N. Sharkovsky, “’Dry’ turbulence,” in: Proceedings of the International Workshop “Nonlinear and Turbulent Processes in Physics,” Vol. 3 (1984), pp. 1621–1626.

    Google Scholar 

  30. A. N. Sharkovsky, “Chaos from a time-delayed Chua’s circuit,” IEEE Trans. Circ. Syst., 40, No. 10, 781–783 (1993).

    Article  MATH  Google Scholar 

  31. A. N. Sharkovsky, “Ideal turbulence in an idealized time-delayed Chua’s circuit,” Int. J. Bifurcation Chaos, 4, No. 2, 303–309 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  32. A. N. Sharkovsky, “Universal phenomena in some infinite-dimensional dynamical systems,” Int. J. Bifurcation Chaos, 5, No. 5, 1419–1425 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  33. A. N. Sharkovsky, “Iteration of continuous functions and dynamics of solutions for some boundary value problems,” Ann. Math. Silesianae (Proceedings of the International Conference on Iteration Theory), 13, 243–255 (1999).

    MATH  MathSciNet  Google Scholar 

  34. O. M. Sharkovs’kyi, “Dynamical systems generated by boundary-value problems. Ideal turbulence. Computer turbulence,” in: Proceedings of the Ukrainian Mathematical Congress, Dynamical Systems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2003), pp. 125–129.

    Google Scholar 

  35. A. N. Sharkovsky, “Difference equations and boundary value problems,” in: New Progress in Difference Equations, Proceedings of the International Conference “Differential Equations and Applications” (ICDEA-2001) (2004), pp. 3–22.

  36. A. N. Sharkovsky, “Ideal turbulence: definition,” in: Grazer Math. Berichte, Proceedings of the International Conference on Iteration Theory, No. 346 (2004), pp. 403–412.

  37. A. N. Sharkovsky, “Ideal turbulence,” Nonlin. Dynam., 44, 15–27 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  38. A. N. Sharkovsky, P. Deregel, and L. O. Chua, “Dry turbulence and period-adding phenomena from a 1-D map,” Int. J. Bifurcation Chaos, 5, No. 5, 1283–1302 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  39. A. N. Sharkovsky, Yu. L. Maistrenko, P. Deregel, and L. O. Chua, “Dry turbulence from a time delayed Chua’s circuit,” Syst. Comput., 3, No. 2, 645–668 (1993).

    Google Scholar 

  40. A. N. Sharkovsky, Yu. L. Maistrenko, and E. Yu. Romanenko, Difference Equations and Their Applications, Kluwer, Dordrecht (1993).

    Google Scholar 

  41. A. N. Sharkovsky and E. Yu. Romanenko, “Ideal turbulence: attractors of deterministic systems may lie in the space of random fields,” Int. J. Bifurcation Chaos, 2, No. 1, 31–36 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  42. O. M. Sharkovs’kyi and O. Yu. Romanenko, “Self-stochasticity: attractors of deterministic problems can contain random functions,” Dopov. Nats. Akad. Nauk Ukr., No. 10, 33–39 (1992).

  43. O. M. Sharkovs’kyi and O. Yu. Romanenko, “Asymptotic properties of solutions of one class of boundary-value problems,” Dopov. Nats. Akad. Nauk Ukr., No. 3, 43–48 (1999).

  44. A. N. Sharkovskii and E. Yu. Romanenko, “Difference equations and dynamical systems generated by some classes of boundary-value problems,” Tr. Mat. Inst. Ros. Akad. Nauk, 244, 281–296 (2004).

    MathSciNet  Google Scholar 

  45. A. N. Sharkovsky and E. Yu. Romanenko, “Turbulence: ideal,” in: A. Scott (editor), Encyclopedia of Nonlinear Science, Routledge, New York (2005), pp. 955–957.

    Google Scholar 

  46. A. N. Sharkovsky, E. Yu. Romanenko, and S. A. Berezovsky, “Ideal turbulence: definition and models,” in: Proceedings of the International Conference “Physics and Control,” Vol. 1, Petersburg (2003), pp. 23–30.

    Google Scholar 

  47. A. N. Sharkovsky, E. Yu. Romanenko, and V. V. Fedorenko, “One-dimensional bifurcations in some infinite-dimensional dynamical systems and ideal turbulence,” Regular Chaotic Dynamics, 11, No. 2 (2006).

  48. A. N. Sharkovsky and A. G. Sivak, “Universal phenomena in solution bifurcations of some boundary value problems,” J. Nonlin. Math. Phys., 1, No. 2, 147–157 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  49. M. V. Jakobson, “Absolutely continuous invariant measure for one-parameter families of one-dimensional maps,” Commun. Math. Phys., 81, 39–88 (1981).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 2, pp. 217–230, February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanenko, E.Y., Sharkovskii, A.N. Dynamical systems and simulation of turbulence. Ukr Math J 59, 229–242 (2007). https://doi.org/10.1007/s11253-007-0018-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-007-0018-z

Keywords

Navigation