Skip to main content
Log in

On Kolmogorov-type inequalities for functions defined on a semiaxis

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We established necessary and sufficient conditions for the existence of a function from the class S with given integral norms of three successive derivatives (generally speaking, of fractional order).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. N. Kolmogorov, “On inequalities between upper bounds of successive derivatives of an arbitrary function on an infinite interval,” Uch. Zap. Mosk. Univ., 30, Book 3, 3–13 (1939).

    Google Scholar 

  2. A. N. Kolmogorov, “On inequalities between upper bounds of successive derivatives of a function on an infinite interval,” in: A. N. Kolmogorov, Selected Works. Mathematics, Mechanics [in Russian], Nauka, Moscow (1985), pp. 252–263.

    Google Scholar 

  3. V. N. Gabushin, “On the best approximation of the operator of differentiation on a half-line,” Mat. Zametki, 6, No. 5, 573–582 (1976).

    Google Scholar 

  4. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge (1934).

    Google Scholar 

  5. E. M. Stein, “Functions of exponential type,” Ann. Math., 65, No. 3, 582–592 (1957).

    Article  Google Scholar 

  6. L. V. Taikov, “Kolmogorov-type inequalities and formulas of numerical differentiation,” Mat. Zametki, 4, No. 2, 223–238 (1967).

    Google Scholar 

  7. E. Landau, “Einige Ungleichungen fur zweimal differenzierbare Funktion,” Proc. London Math. Soc., 13, 43–49 (1913).

    Article  Google Scholar 

  8. A. P. Matorin, “On inequalities between the maxima of absolute values of a function and its derivatives on a semiaxis,” Ukr. Mat. Zh., 7, No. 3, 262–266 (1955).

    MATH  MathSciNet  Google Scholar 

  9. I. J. Schoenberg and A. Cavaretta, Solutions of Landau’s Problem Concerning Higher Derivatives on Half-Line, M. R. C. Techn. Summary Report (1970).

  10. I. J. Schoenberg and A. Cavaretta, “Solutions of Landau’s problem concerning higher derivatives on half-line,” in: Proceedings of the Conference on Approximation Theory, Varna, Sofia (1972), pp. 297–308.

    Google Scholar 

  11. Yu. I. Lyubich, “On inequalities between orders of linear operators,” Izv. Akad. Nauk SSSR, Ser. Mat., 24, 825–864 (1960).

    MATH  MathSciNet  Google Scholar 

  12. N. P. Kuptsov, “Kolmogorov estimates for derivatives in L 2[0, ∞),” Tr. Mat. Inst. Akad. Nauk SSSR, 138, 94–117 (1975).

    MATH  Google Scholar 

  13. V. V. Arestov, “Best approximation of unbounded operators by bounded operators and related extremal problems,” Usp. Mat. Nauk, 6, 89–124 (1966).

    Google Scholar 

  14. V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).

    Google Scholar 

  15. V. M. Tikhomirov and G. G. Magaril-Il’yaev, “Inequalities for derivatives: Comments to Selected Works by A. N. Kolmogorov,” in: A. N. Kolmogorov, Selected Works. Mathematics, Mechanics [in Russian], Nauka, Moscow (1985), pp. 387–390.

    Google Scholar 

  16. V. M. Olovyanishnikov, “On inequalities for upper bounds of successive derivatives on a semiaxis,” Usp. Mat. Nauk, 642, No. 2, 167–170 (1951).

    Google Scholar 

  17. Yu. N. Subbotin and N. I. Chernykh, Inequalities for Derivatives of Monotone Functions [in Russian], MIET, Moscow (2003).

    Google Scholar 

  18. V. F. Babenko and Yu. V. Babenko, “About Kolmogorov-type inequalities for functions defined on a half-line,” in: Abstracts of the International Conference “Constructive Theory of Functions” (Varna, 2002), DARBA, Sofia (2003), pp. 205–208.

    Google Scholar 

  19. V. F. Babenko and Yu. V. Babenko, “Kolmogorov inequalities for multiply monotone functions defined on a half-line,” East. J. Approxim., 11, No. 2, 169–186 (2005).

    MATH  MathSciNet  Google Scholar 

  20. V. F. Babenko and Yu. V. Babenko, “The Kolmogorov inequality for absolutely monotone functions on a half-line,” in: M. Neamtu and E. Saff (editors), Advances in Constructive Approximation, Nashboro Press, Vol. 30, Brentwood, TN (2004), pp. 1–12.

  21. M. G. Krein and A. A. Nudel’man, Markov Moment Problem and Extremal Problems [in Russian], Nauka, Moscow (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 10, pp. 1299–1312, October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, V.F., Skorokhodov, D.S. On Kolmogorov-type inequalities for functions defined on a semiaxis. Ukr Math J 59, 1453–1471 (2007). https://doi.org/10.1007/s11253-008-0001-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-008-0001-3

Keywords

Navigation