Skip to main content
Log in

Closed polynomials and saturated subalgebras of polynomial algebras

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

The behavior of closed polynomials, i.e., polynomials \( f \in \Bbbk [x_1 , \ldots ,x_n ]\backslash \Bbbk \) such that the subalgebra \( \Bbbk [f] \) is integrally closed in \( \Bbbk [x_1 , \ldots ,x_n ] \) , is studied under extensions of the ground field. Using some properties of closed polynomials, we prove that, after shifting by constants, every polynomial \( f \in \Bbbk [x_1 , \ldots ,x_n ]\backslash \Bbbk \) can be factorized into a product of irreducible polynomials of the same degree. We consider some types of saturated subalgebras \( A \subset \Bbbk [x_1 , \ldots ,x_n ] \) , i.e., subalgebras such that, for any \( f \in A\backslash \Bbbk \) , a generative polynomial of f is contained in A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ayad, “Sur les polynômes f(X,Y) tels que K[f] est intégralement fermé dans K[X,Y],” Acta Arithm., 105, No. 1, 9–28 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Nowicki, “On the Jacobian equation J(f,g) = 0 for polynomials in k[x,y],”, Nagoya Math. J., 109, 151–157 (1988).

    MATH  MathSciNet  Google Scholar 

  3. A. Nowicki and M. Nagata, “Rings of constants for k-derivations in k[x 1, …, x n],” J. Math. Kyoto Univ., 28, 111–118 (1988).

    MATH  MathSciNet  Google Scholar 

  4. A. Schinzel, Polynomials with Special Regard to Reducibility, Cambridge University Press, Cambridge (2000).

    MATH  Google Scholar 

  5. N. Bourbaki, Elements of Mathematics, Commutative Algebra, Springer, Berlin (1989).

    MATH  Google Scholar 

  6. I. R. Shafarevich, Basic Algebraic Geometry I, Springer, Berlin (1994).

    Google Scholar 

  7. A. Zaks, “Dedekind subrings of k[x 1, …, x n] are rings of polynomials,” Isr. J. Math., 9, 285–289 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. Stein, “The total reducibility order of a polynomial in two variables,” Isr. J. Math., 68, 109–122 (1989).

    Article  MATH  Google Scholar 

  9. E. Cygan, “Factorization of polynomials,” Bull. Polish. Acad. Sci. Math., 40, 45–52 (1992).

    MATH  MathSciNet  Google Scholar 

  10. D. Lorenzini, “Reducibility of polynomials in two variables,” J. Algebra, 156, 65–75 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Kaliman, “Two remarks on polynomials in two variables,” Pacif. J. Math., 154, 285–295 (1992).

    MATH  MathSciNet  Google Scholar 

  12. A. Vistoli, “The number of reducible hypersurfaces in a pencil,” Invent. Math., 112, 247–262 (1993).

    Article  MathSciNet  Google Scholar 

  13. S. Najib, “Une généralisation de l’inégalité de Stein-Lorenzini,” J. Algebra, 292, 566–573 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Fulton, “Introduction to toric varieties,” Ann. Math. Stud., 131 (1993).

  15. S. Lang, Algebra, Springer (2002).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 59, No. 12, pp. 1587–1593, December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arzhantsev, I.V., Petravchuk, A.P. Closed polynomials and saturated subalgebras of polynomial algebras. Ukr Math J 59, 1783–1790 (2007). https://doi.org/10.1007/s11253-008-0037-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-008-0037-4

Keywords

Navigation