Skip to main content
Log in

Singular Cauchy problem for the equation of flow of thin viscous films with nonlinear convection

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

For multidimensional equations of flow of thin capillary films with nonlinear diffusion and convection, we prove the existence of a strong nonnegative generalized solution of the Cauchy problem with initial function in the form of a nonnegative Radon measure with compact support. We determine the exact upper estimate (global in time) for the rate of propagation of the support of this solution. The cases where the degeneracy of the equation corresponds to the conditions of “strong” and “weak” slip are analyzed separately. In particular, in the case of “ weak” slip, we establish the exact estimate of decrease in the L 2-norm of the gradient of solution. It is well known that this estimate is not true for the initial functions with noncompact supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Bernis, “Viscous flows, fourth order nonlinear degenerate parabolic equations, and singular elliptic problems,” in: J. I. Diaz, M. A. Herrero, A. Linan, and J. L. Vazquez (editors) Free Boundary Problems: Theory and Applications, Pitman Res. Notes Math., Vol. 323, Longman, Harlow (1995) pp. 40–56.

    Google Scholar 

  2. A. L. Bertozzi, A. Munch, and M. Shearer, “Undercompressive shocks in thin film flows,” Physica D, 134, 431–464 (1999).

    Article  MathSciNet  Google Scholar 

  3. A. L. Bertozzi and M. Pugh, “The lubrication approximation for thin viscous films: the moving contact line with a porous media cutoff of the Van-der-Waals interactions,” Nonlinearity, 7, 1535–1564 (1994).

    Article  MathSciNet  Google Scholar 

  4. A. L. Bertozzi and M. Pugh, “Long-wave instabilities and saturation in thin film equations,” Communs Pure Appl. Math., 51, No. 6, 625–661 (1998).

    Article  MathSciNet  Google Scholar 

  5. C. M. Elliot and H. Garcke, “On the Cahn-Hilliard equation with degenerate mobility,” SIAM J. Math. Anal., 27, No. 2, 404–423 (1996).

    Article  MathSciNet  Google Scholar 

  6. G. Grün, “Degenerate parabolic differential equations of fourth order and plasticity model with nonlocal hardening,” Z. Anal. Anwendungen., 14, 541–574 (1995).

    MATH  MathSciNet  Google Scholar 

  7. A. L. Bertozzi, A. Munch, M. Shearer, and K. Zumbrun, “Stability of compressive and undercompressive thin film traveling waves. The dynamics of thin fluid films,” Eur. J. Appl. Math., 12, No. 3, 253–291 (2001).

    Article  MathSciNet  Google Scholar 

  8. A. L. Bertozzi and M. Shearer, “Existence of undercompressive traveling waves in thin film equations, ” SIAM J. Math. Anal., 32, 194–213 (2000).

    Article  MathSciNet  Google Scholar 

  9. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linè aires, Gauthier-Villars, Dunod (1969).

    Google Scholar 

  10. F. Bernis and A. Friedman, “Higher order nonlinear degenerate parabolic equations,” J. Different. Equat., 83, 179–206 (1990).

    Article  MathSciNet  Google Scholar 

  11. F. Bernis, “Finite speed of propagation and continuity of the interface for thin viscous flows, ” Adv. Different. Equat., 1, No. 3, 337–368 (1996).

    MATH  MathSciNet  Google Scholar 

  12. R. Kersner and A. Shishkov, Existence of Free Boundaries in Thin-Film Theory, Preprint No. 6, Institute of Applied Mathematics and Mechanics, Ukrainian National Academy of Sciences, Donetsk (1996).

    Google Scholar 

  13. E. Beretta, M. Bertsch, and R. dal Passo, “Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation,” Arch. Rat. Mech. Anal., 129, No. 2, 175–200 (1995).

    Article  Google Scholar 

  14. F. Bernis, “Finite speed of propagation for thin viscous flows when 2 ≤ n < 3,” C. R. Acad. Sci. Ser. Math., 322, 1169–1174 (1996).

    MATH  MathSciNet  Google Scholar 

  15. J. Hulshof and A. Shishkov, “The thin film equation with 2 ≤ n < 3: Finite speed of propagation in terms of the L 1-norm,” Adv. Different. Equat., 3, 625–642 (1998).

    MathSciNet  Google Scholar 

  16. F. Bernis, L. A. Peletier, and S. M. Williams, “Source type solutions of a fourth-order nonlinear degenerate parabolic equation,” Nonlin. Anal., 18, 217–234 (1992).

    Article  MathSciNet  Google Scholar 

  17. F. Bernis and R. Ferreira, “Source-type solutions to thin-film equations in higher dimensions, ” Eur. J. Appl. Math., 8, 507–524 (1997).

    Article  MathSciNet  Google Scholar 

  18. E. Beretta, “Self-similar source solutions of a fourth-order degenerate parabolic equation,” Nonlin. Anal., 29, No. 7, 741–760 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. L. Bertozzi and M. Pugh, “The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions,” Comm. Pure Appl. Math., 49, No. 2, 85–123 (1994).

    Article  MathSciNet  Google Scholar 

  20. L. Giacomelli, “A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane,” Appl. Math. Lett., 12, No. 8, 107–111 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Giacomelli and A. Shishkov, “Propagation of support in one-dimensional convected thin-film flow, ” Indiana Univ. Math. J., 54, No. 4, 1181–1215 (2005).

    Article  MathSciNet  Google Scholar 

  22. R. dal Passo, H. Garcke, and G. Grun, “On a fourth-order degenerate parabolic equation: Global entropy estimates, existence and qualitative behavior of solutions,” SIAM J. Math. Anal., 29, No. 2, 321–342 (1998).

    Article  MathSciNet  Google Scholar 

  23. G. Grün, On Free-Boundary Problems Arising in Thin-Film Flow, Habilitat. Thesis, Univ. Bonn (2001) (accepted).

  24. R. dal Passo, L. Giacomelli, and A. Shishkov, “The thin film equation with nonlinear diffusion, ” Comm. Part. Different. Equat., 26, 1509–1557_(2001).

    Article  Google Scholar 

  25. R. M. Taranets and A. E. Shishkov, “On the equation of flow of thin films with nonlinear convection in multidimensional domains,” Ukr. Mat. Visn., 1, No. 3, 402–444 (2004).

    MathSciNet  Google Scholar 

  26. M. Bertsch, R. dal Passo, H. Garcke, and G. Grun, “The thin viscous flow equation in higher space dimension,” Adv. Different. Equat., 3, 417–440 (1998).

    Google Scholar 

  27. R. dal Passo and H. Garcke, “Solutions of a fourth-order degenerate parabolic equation with weak initial trace,” Ann. S. N. S., Classe Sci., 28, 153–181 (1999).

    Google Scholar 

  28. R. M. Taranets, Solvability and Qualitative Properties of Solutions of the Equations of Thin Capillary Films with Nonlinear Diffusion, Convection, and Absorption [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Donetsk (2005).

  29. L. Nirenberg, “An extended interpolation inequality,” Ann. Scuola Norm. Super. Pisa, 20, 733–737 (1966).

    MATH  MathSciNet  Google Scholar 

  30. G. Stampacchia, Equations Elliptiques du Second Order a Coefficients Discontinues, Montreal, Univ. Montreal (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 2, pp. 250–271, February, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taranets, R.M., Shishkov, A.E. Singular Cauchy problem for the equation of flow of thin viscous films with nonlinear convection. Ukr Math J 58, 280–303 (2006). https://doi.org/10.1007/s11253-006-0066-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0066-9

Keywords

Navigation