Skip to main content
Log in

Long-range order in Gibbs lattice classical linear oscillator systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

The existence of the ferromagnetic long-range order (lro) is proved for Gibbs classical lattice systems of linear oscillators interacting via a strong polynomial pair nearest neighbor (n-n) ferromagnetic potential and other (nonpair) potentials that are weak if they are not ferromagnetic. A generalized Peierls argument and two different contour bounds are our main tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Glimm, A. Jaffe, and T. Spencer, “Phase transitions for ϕ 42 quantum fields,” Commun. Math. Phys., 45, 203–216 (1975).

    Article  MathSciNet  Google Scholar 

  2. J. Fröhlich and E. Lieb, “Phase transitions in anisotropic lattice spin systems,” Commun. Math. Phys., 60, 233–267 (1978).

    Article  Google Scholar 

  3. W. Skrypnik, “LRO in lattice systems of linear oscillators with strong bilinear pair nearest-neighbour interaction,” J. Phys. A, 32, 7039–7048 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  4. W. I. Skrypnik, “LRO in lattice systems of linear classical and quantum oscillators. Strong nearest-neighbor pair quadratic interaction,” J. Stat. Phys., 100, No. 5/6, 853–870 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  5. W. I. Skrypnik, “Long-range order in non-equilibrium systems of interacting Brownian linear oscillators,” J. Stat. Phys., 111, No. 1/2, 291–321 (2002).

    Article  MathSciNet  Google Scholar 

  6. W. I. Skrypnik, “Long-range order in linear ferromagnetic oscillator systems. Strong pair quadratic n-n potential,” Ukr. Mat. Zh., 56, No. 6, 810–817 (2004).

    MATH  MathSciNet  Google Scholar 

  7. B. Simon, The P(φ) 2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, NJ (1974).

    Google Scholar 

  8. J. Ginibre, “General formulation of Griffiths’ inequalities,” Commun. Math. Phys., 16, 310–328 (1970).

    Article  MathSciNet  Google Scholar 

  9. H. Kunz, “Analyticity and clustering properties of unbounded spin systems,” Commun. Math. Phys., 59, 53–69 (1978).

    Article  MathSciNet  Google Scholar 

  10. D. Ruelle, “Probability estimates for continuous spin systems,” Commun. Math. Phys., 50, 189–194 (1976).

    Article  MathSciNet  Google Scholar 

  11. J. Bricmont and J.-R. Fontaine, “Correlation inequalities and contour estimates,” J. Stat. Phys., 26, No. 4, 745 (1981).

    Article  MathSciNet  Google Scholar 

  12. D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York-Amsterdam (1969).

    Google Scholar 

  13. G. Benfatto, C. Marchioro, E. Presutti, and M. Pulvirenti, “Superstability estimates for anharmonic systems,” J. Stat. Phys., 22, No. 3, 349–362 (1980).

    Article  MathSciNet  Google Scholar 

  14. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York (1976).

    Google Scholar 

  15. H. Kunz and B. Payandeh, “Existence of a phase transition for a class of ferroelectric models near the displacive limit,” Phys. Rev. B, 18, 2276–2280 (1978).

    Article  Google Scholar 

  16. J. Lebowitz and N. Macris, “Low-temperature phases of itinerant fermions interacting with classical phonons: The static Holstein model,” J. Stat. Phys., 76, No. 1/2, 91–123 (1994).

    Article  MathSciNet  Google Scholar 

  17. C. Borgs and R. Waxler, “First order phase transitions in unbounded spin systems. I: Construction of the phase diagram,” Commun. Math. Phys., 126, 291–324 (1989).

    Article  MathSciNet  Google Scholar 

  18. S. Shlosman, “Reflection positivity method in mathematical theory of first-order phase transitions,” Usp. Mat. Nauk, 41, No. 3, 69 (1986).

    MathSciNet  Google Scholar 

  19. Ya. G. Sinai, Theory of Phase Transitions. Rigorous Results [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  20. C. Borgs, J. Fröhlich, and R. Waxler, “The phase structure of the large n lattice Higgs model,” Nucl. Phys. B, 328, 611–638 (1989).

    Article  Google Scholar 

  21. M. V. Fedoryuk, Asymptotics, Integrals, and Series [in Russian], Nauka, Moscow (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 3, pp. 388–405, March, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skrypnik, W.I. Long-range order in Gibbs lattice classical linear oscillator systems. Ukr Math J 58, 438–457 (2006). https://doi.org/10.1007/s11253-006-0077-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0077-6

Keywords

Navigation