Skip to main content
Log in

On Dirichlet problem for string equation, Poncelet problem, Pell-Abel equation, and some other related problems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

In a plane domain bounded by a biquadratic curve, we consider the problem of the uniqueness of a solution of the Dirichlet problem for the string equation. We show that this problem is equivalent to the classical Poncelet problem in projective geometry for two appropriate ellipses and also to the problem of the solvability of the Pell-Abel algebraic equation; some other related problems are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Hadamard, “Equations aux dérivées partielles,” L’Enseign. Math., 36, 25–42 (1936).

    MathSciNet  Google Scholar 

  2. A. Huber, “Die erste Randwertaufgabe für geschlossene Bereiche bei der Gleichung U xy = f(x, y),” Monatsh. Math. Phys., 39, 79–100 (1932).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. G. Bourgin and R. Duffin, “The Dirichlet problem for the vibrating string equation,” Bull. Amer. Math. Soc., 45, No. 12, 851–858 (1939).

    MATH  MathSciNet  Google Scholar 

  4. B. I. Ptashnik, Ill-Posed Boundary-Value Problems for Partial Differential Equations [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  5. F. John, “The Dirichlet problem for a hyperbolic equation,” Amer. J. Math., 63, No. 1, 141–154 (1941).

    Article  MATH  MathSciNet  Google Scholar 

  6. R. A. Aleksandryan, “On the Dirichlet problem for the string equation and the completeness of a system of functions in a disk,” Dokl. Akad. Nauk SSSR, 73, No. 5 (1950).

    Google Scholar 

  7. R. A. Aleksandryan, “Spectral properties of operators generated by systems of differential equations of Sobolev type,” Tr. Mosk. Mat. Obshch., 9, 455–505 (1960).

    MATH  Google Scholar 

  8. G. S. Akopyan, “On the completeness of a system of proper vector-polynomials of a linear pencil of differential operators in ellipsoidal domains,” Dokl. Akad. Nauk Arm. SSR, 86, No. 4, 147–152 (1988).

    MATH  Google Scholar 

  9. V. I. Arnol’d, “Small denominators. I,” Izv. Akad. Nauk SSSR, Ser. Mat., 25, No. 1, 21–86 (1961).

    MathSciNet  Google Scholar 

  10. Yu. M. Berezanskii, Expansion in Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).

    Google Scholar 

  11. T. I. Zelenyak, Selected Problems of Qualitative Theory of Partial Differential Equations [in Russian], Novosibirsk University, Novosibirsk (1970).

    Google Scholar 

  12. M. V. Fomin, “On singular spectrum in Sobolev problem,” in: Mathematical Analysis and Differential Equations [in Russian], Novosibirsk University, Novosibirsk (1992), pp. 11–15.

    Google Scholar 

  13. Z. Nitecki, Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms, MIT, Cambridge (1971).

    MATH  Google Scholar 

  14. R. Baxter, Exactly Solvable Models in Statistical Mechanics, Academic Press, London (1982).

    Google Scholar 

  15. A. P. Veselov, “Integrable systems with discrete time and difference operators,” Funkts. Anal. Prilozhen., 22, 1–13 (1988).

    MATH  MathSciNet  Google Scholar 

  16. J. P. Francoise and O. Ragnisco, “An iterative process on quartics and integrable symplectic maps, ” in: P. A. Clarkson and F. W. Nijhoff (editors), Symmetries and Integrability of Difference Equations, Cambridge University, Cambridge (1998).

    Google Scholar 

  17. M. Berger, Géométrie, CEDIC (1978).

  18. Ya. I. Granovskii and A. S. Zhedanov, “Integrability of classical XY-chain,” Pis’ma Zh. Éksp. Teor. Fiz., 44, 237–239 (1986).

    MathSciNet  Google Scholar 

  19. J. V. Poncelet, Traité des Propriétés Projectives des Figures: Ouvrage Utile à qui s’Occupent des Applications de la Géométrie Descriptive et d’Opérations Géométriques sur le Terrain, Vols. 1, 2, Gauthier-Villars, Paris (1865–1866).

  20. P. Griffiths and J. Harris, “On a Cayley’s explicit solution to Poncelet’s porism,” Enseign. Math., 24, No. 2, 31–40 (1978).

    MATH  MathSciNet  Google Scholar 

  21. S. M. Kerawala, “Poncelet’s porism in two circles,” Bull. Calcutta Math. Soc., 39, 85–105 (1947).

    MATH  MathSciNet  Google Scholar 

  22. A. O. Gel’fond, Solution of Equations in Integers [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  23. N. H. Abel, Über die Integration der Differential-Formel \({{\rho dx} \mathord{\left/ {\vphantom {{\rho dx} {\sqrt R }}} \right. \kern-\nulldelimiterspace} {\sqrt R }}\), wenn R und ρ ganze Functionen sind,” Z. Reine Angew. Math., 1, 185–231 (1826).

    MATH  Google Scholar 

  24. V. V. Golubev, “Works of P. L. Chebyshev on integration of algebraic functions,” in: Scientific Heritage of P. L. Chebyshev. Mathematics [in Russian], Academy of Sciences of the USSR, Moscow (1945), pp. 88–121.

    Google Scholar 

  25. N. I. Akhiezer, Lectures on Approximation Theory [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  26. L. M. Sodin and P. M. Yuditskii, “Functions least deviating from zero on closed subsets of the real axis,” Alg. Analiz, 4, Issue 2, 1–61 (1991).

    MathSciNet  Google Scholar 

  27. V. A. Malyshev, “Abel equation,” Alg. Analiz, 13, Issue 6, 1–55 (2001).

    MathSciNet  Google Scholar 

  28. N. I. Akhiezer, Elements of the Theory of Elliptic Functions [in Russian], Nauka, Moscow (1970).

    MATH  Google Scholar 

  29. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York (1955).

    MATH  Google Scholar 

  30. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Cambridge University, Cambridge (1927).

  31. V. P. Burskii, “Boundary-value problems for an elliptic equation with complex coefficients and a certain moment problem,” Ukr. Mat. Zh., 45, No. 11, 1476–1483 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  32. V. P. Burskii, Methods for Investigation of Boundary-Value Problems for General Differential Equations [in Russian], Naukova Dumka, Kiev (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 4, pp. 435–450, April, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burskii, V.P., Zhedanov, A.S. On Dirichlet problem for string equation, Poncelet problem, Pell-Abel equation, and some other related problems. Ukr Math J 58, 487–504 (2006). https://doi.org/10.1007/s11253-006-0081-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0081-x

Keywords

Navigation