Skip to main content

Advertisement

Log in

Comparison of exact constants in Kolmogorov-type inequalities for periodic and nonperiodic functions of many variables

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We investigate the correlation between the constants K(ℝn) and \(K(\mathbb{T}^n )\), where

$$K(G^n ): = \mathop {\sup }\limits_{\mathop {\prod _{i = 1}^n \left\| {D_i^{l_i } f} \right\|_{L_p (G^n )} \ne 0}\limits^{f \in L_{p,p}^l (G^n )} } \frac{{\left\| {D^\alpha f} \right\|_{L_p (G^n )} }}{{\left\| f \right\|_{L_p (G^n )}^{\mu _0 } \prod _{i = 1}^n \left\| {D_i^{l_i } f} \right\|_{L_p (G^n )}^{\mu _i } }}$$

is the exact constant in a Kolmogorov-type inequality, ℝ is the real straight line, \(\mathbb{T} = \left[ {0,2\pi } \right]\), L p, p l (G n) is the set of functions ƒL p (G n) such that the partial derivative \(D_i^{l_i } f(x)\) belongs to L p (G n), \(i = \overline {1,n} \), 1 ≤ p ≤ ∞, l ∈ ℕn, α ∈ ℕ n0 = (ℕ ∪ 〈0〉)n, D α f is the mixed derivative of a function ƒ, 0 < µi < 1, \(i = \overline {0,n} \), and ∑ n i=0 . If G n = ℝ, then µ0=1−∑ n i=0 i /l i ), µi = αi/l i , \(i = \overline {1,n} \) if \(G^n = \mathbb{T}^n \), then µ0=1−∑ n i=0 i /l i ) − ∑ n i=0 (λ/l i ), µi = αi/ l i + λ/l i , \(i = \overline {1,n} \), λ ≥ 0. We prove that, for λ = 0, the equality \(K(\mathbb{R}^n ) = K(\mathbb{T}^n )\) is true.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. N. Kolmogorov, Selected Works. Mathematics and Mechanics [in Russian], Nauka, Moscow (1985).

    MATH  Google Scholar 

  2. V. M. Tikhomirov and G. G. Magaril-Il’yaev, “Inequalities for derivatives,” in: A. N. Kolmogorov, Selected Works. Mathematics and Mechanics [in Russian], Nauka, Moscow (1985), pp. 387–390.

    Google Scholar 

  3. V. V. Arestov and V. N. Gabushin, “Best approximation of unbounded operators by bounded ones,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 11, 44–46 (1995).

  4. V. V. Arestov, “Approximation of unbounded operators by bounded ones and related extremal problems,” Usp. Mat. Nauk, 51, No. 6, 88–124 (1996).

    MathSciNet  Google Scholar 

  5. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Inequalities of Kolmogorov type and some their applications in approximation theory,” Rend. Circ. Mat. Palermo, Ser. II. Suppl., 52, 223–237 (1998).

    MATH  MathSciNet  Google Scholar 

  6. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On the exact inequalities of Kolmogorov type and some their applications,” in: New Approaches in Nonlinear Analysis, Hadronic Press, Palm Harbor (1999), pp. 9–50.

    Google Scholar 

  7. V. F. Babenko, “Investigations of Dnepropetrovsk Mathematicians Related to Inequalities for Derivatives of Periodic Functions and Their Applications,” Ukr. Mat. Zh., 51, No. 1, 9–29 (2000).

    MathSciNet  Google Scholar 

  8. V. N. Gabushin, “Inequalities for norms of functions and their derivatives in metrics of Lp,” Mat. Zametki, 1, No. 3, 291–298 (1967).

    MATH  MathSciNet  Google Scholar 

  9. B. E. Klots, “Approximation of differentiable functions by functions of higher smoothness,” Mat. Zametki, 21, No. 1, 21–32 (1977).

    MATH  MathSciNet  Google Scholar 

  10. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Comparison of exact constants in inequalities for derivatives of functions defined on the real axis and a circle,” Ukr. Mat. Zh., 55, No. 5, 579–589 (2003).

    MATH  MathSciNet  Google Scholar 

  11. V. F. Babenko, N. P. Korneichuk, and S. A. Pichugov, “On Kolmogorov-type inequalities for the norms of intermediate derivatives of functions of many variables,” in: Constructive Theory of Functions (Varna 2002), DARBA, Sofia (2003), pp. 209–212.

    Google Scholar 

  12. V. F. Babenko, N. P. Korneichuk, and S. A. Pichugov, “Kolmogorov-type inequalities for the norms of mixed derivatives of functions of many variables,” E. J. Approxim., 10, No. 1–2, 1–15 (2004).

    MATH  MathSciNet  Google Scholar 

  13. V. F. Babenko, N. P. Korneichuk, and S. A. Pichugov, “Kolmogorov-type inequalities for mixed derivatives of functions of many variables,” Ukr. Mat. Zh., 56, No. 5, 579–594 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  14. V. A. Solonnikov, “On some inequalities for functions from the classes W p (ℝn),” Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk SSSR, 27, 194–210 (1972).

    MATH  MathSciNet  Google Scholar 

  15. O. V. Besov, “Multiplicative estimates for integral norms of differentiable functions of many variables,” Tr. Mat. Inst. Akad. Nauk SSSR, 131, 3–15 (1974).

    MATH  MathSciNet  Google Scholar 

  16. G. G. Magaril-Il’yaev, “Problem of intermediate derivative,” Mat. Zametki, 25, No. 1, 81–96 (1979).

    MathSciNet  MATH  Google Scholar 

  17. É. M. Galeev, “Approximation of classes of functions with several bounded derivatives by Fourier sums,” Mat. Zametki, 23, No. 2, 197–212 (1978).

    MATH  MathSciNet  Google Scholar 

  18. A. F. Timan, Theory of Approximation of Functions of Real Variables [in Russian], Fizmatgiz, Moscow (1960).

    Google Scholar 

  19. V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).

    MATH  Google Scholar 

  20. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Imbedding Theorems [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  21. S. M. Nikol’skii, Approximation of Functions of Many Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 5, pp. 597–606, May, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, V.F., Churilova, M.S. Comparison of exact constants in Kolmogorov-type inequalities for periodic and nonperiodic functions of many variables. Ukr Math J 58, 674–684 (2006). https://doi.org/10.1007/s11253-006-0093-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0093-6

Keywords

Navigation