Skip to main content
Log in

Mel’nikov-Samoilenko adiabatic stability problem

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We develop a symplectic method for the investigation of invariant submanifolds of nonautonomous Hamiltonian systems and ergodic measures on them. The so-called Mel’nikov-Samoilenko problem for the case of adiabatically perturbed completely integrable oscillator-type Hamiltonian systems is studied on the basis of a new construction of “ virtual” canonical transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. I. Arnol’d, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical Celestial Mechanics [in Russian], URSS, Moscow (2002).

    Google Scholar 

  2. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York (1983).

    MATH  Google Scholar 

  3. V. I. Arnol’d, Additional Chapters of the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  4. R. Abraham and J. Marsden, Foundations of Mechanics, Commings, New York (1978).

    MATH  Google Scholar 

  5. V. K. Mel’nikov, “On some cases of preservation of conditionally periodic motions under small variation of the Hamiltonian function,” Dokl. Akad. Nauk SSSR, 165, No. 6, 1245–1248 (1965).

    MathSciNet  Google Scholar 

  6. V. K. Mel’nikov, “On one family of conditionally periodic motions of a Hamiltonian system,” Dokl. Akad. Nauk SSSR, 30, No. 5, 3121–3133 (1968).

    Google Scholar 

  7. A. M. Samoilenko, “Perturbation theory of smooth invariant tori of dynamical systems,” Nonlin. Anal. Theory, Meth. Appl., 30, No. 5, 3121–3133 (1997).

    Article  MATH  Google Scholar 

  8. A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations [in Russian], Moscow, Nauka (1987).

    Google Scholar 

  9. A. M. Samoilenko and Ya. A. Prykarpatsky, “A method of investigating adiabatic invariants of slowly perturbed Hamiltonian systems,” Nonlin. Oscil., 2, No. 1, 20–28 (1999).

    MathSciNet  Google Scholar 

  10. A. M. Samoilenko and Ya. A. Prykarpats’kyi, “Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II,” Ukr. Mat. Zh., 51, No. 11, 1513–1528 (1999).

    Article  Google Scholar 

  11. A. M. Samoilenko and Ya. A. Prykarpats’kyi, Algebraic-Analytic Aspects of Completely Integrable Dynamical Systems and Their Perturbations [in Ukrainian], Institute of Mathematics, Ukrainian Academy of Sciences, Kyiv (2002).

    Google Scholar 

  12. N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, Method of Accelerated Convergence in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1969).

    Google Scholar 

  13. S. M. Graff, “On the conservation of hyperbolic invariant tori for Hamiltonian systems,” J. Different. Equat., 15, No. 1, 1–69 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  14. K. R. Meyer and G. R. Sell, “Melnikov transforms, Bernoulli bundles, and almost periodic perturbations,” Trans. Amer. Math. Soc., 314, No. 1, 63–105 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bourgain, “On Melnikov’s persistence problem,” Math. Res. Lett., 4, 445–458 (1997).

    MathSciNet  MATH  Google Scholar 

  16. A. M. Samoilenko, A. K. Prykarpats’kyi, and V. H. Samoilenko, “Lyapunov-Schmidt approach to studying homoclinic splitting in weakly perturbed Lagrangian and Hamiltonian systems,” Ukr. Mat. Zh., 55, No 1, 66–74 (2003).

    Article  MATH  Google Scholar 

  17. Ya. A. Prykarpatsky, A. M. Samoilenko, and D. L. Blackmore, “Embedding of integral submanifolds and associated adiabatic invariants of slowly perturbed integrable Hamiltonian systems,” Rept. Math. Phys., 44, Nos. 1–2, 171–182 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Yamashita, “Melnikov vector in higher dimension,” Nonlin. Anal. Theory, Meth. Appl., 18, No. 7, 657–670 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Gruendler, “The existence of homoclinic orbits and the method of Melnikov for systems in Rn,” SIAM J. Math. Anal., 16, No. 5, 907–931 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. M. Samoilenko and Ya. A. Prykarpats’kyi, “Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. I,” Ukr. Mat. Zh., 51, No. 10, 1379–1390 (1999).

    Article  Google Scholar 

  21. S. Aubry and P. Y. Le Deeron, “The discrete Frenkel-Kontorova model and its extensions. I,” Physica D, 8, 381–422 (1983).

    Article  MathSciNet  Google Scholar 

  22. M. R. Herman, Sur les Courbes Invariantes par les Difféomorphismes de l’Anneau, Vol. 1, Soc. Math. France, Paris (1983).

    MATH  Google Scholar 

  23. A. Katok, “Some remarks on Birkhoff and Mather twist map theorems,” Ergodic Theor. Dynam. Syst., 2, No. 2, 185–194 (1982).

    MathSciNet  MATH  Google Scholar 

  24. J. N. Mather, “Existence of quasi-periodic orbit for twist homeomorphisms of the annulus,” Topology, 21, No. 2, 457–467 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  25. V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations [in Russian], Gostekhizdat, Moscow (1949).

    Google Scholar 

  26. I. P. Kornfel’d, Ya. G. Sinai, and S. V. Fomin, Ergodic Theory [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  27. Ya. A. Prykarpats’kyi, “Symplectic method for the construction of ergodic measures on invariant submanifolds of nonautonomous Hamiltonian systems: Lagrangian manifolds, their structure, and Mather homologies,” Ukr. Mat. Zh., 58, No. 5, 675–691 (2006).

    Google Scholar 

  28. A. T. Fomenko, Symplectic Geometry [in Russian], Moscow University, Moscow (1988).

    Google Scholar 

  29. S. Wiggins, Global Dynamics, Phase Space Transport, Orbits Homoclinic to Resonances, and Applications, American Mathematical Society, Providence, RI (1993).

    MATH  Google Scholar 

  30. Ya. A. Prykarpatsky, A. M. Samoilenko, D. L. Blackmore, and A. K. Prykarpatsky, “Integrability by quadratures of Hamiltonian systems and Picard-Fuchs type equations: The modern differential-geometric aspects,” Miskolc Math. Notes, 6, No. 1, 65–103 (2005).

    MathSciNet  MATH  Google Scholar 

  31. L. Nirenberg, Nonlinear Functional Analysis [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  32. J. T. Schwartz, Nonlinear Functional Analysis, Gordon & Breach, New York (1969).

    MATH  Google Scholar 

  33. M. A. Krasnosel’skii and V. I. Opoitsev, “Theorem on global isomorphism,” Teor. Funkts. Funkts. Anal. Prilozhen., 20, 83–85 (1978).

    MathSciNet  Google Scholar 

  34. A. M. Samoilenko and R. I. Petryshyn, Mathematical Aspects of the Theory of Nonlinear Oscillations [in Ukrainian], Naukova Dumka, Kyiv (2004).

    Google Scholar 

  35. V. I. Arnol’d, Mathematical Methods in Classical Mechanics [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  36. J. Moser, Lectures on Hamiltonian Systems, Courant Institute of Mathematical Sciences, New York (1969).

    Google Scholar 

  37. J. Moser, “Various aspects of integrable Hamiltonian systems,” Usp. Mat. Nauk, 36, No. 5, 109–151 (1981).

    MATH  Google Scholar 

  38. Yu. A. Mitropol’skii, N. N. Bogolyubov, A. K. Prikarpatskii, and V. G. Samoilenko, Integrable Dynamical Systems: Spectral and Differential-Geometric Aspects [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  39. Yu. A. Mitropol’skii, Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  40. A. M. Samoilenko and R. I. Petrishin, “Averaging method in multifrequency systems with slowly varying parameters,” Ukr. Mat. Zh., 40, No. 4, 453–501 (1988).

    MathSciNet  Google Scholar 

  41. H. Russmann, “Invariant tori in non-degenerate nearly integrable Hamiltonian systems,” Regular Chaotic Dynamics, 6, No. 2, 119–204 (2001).

    Article  MathSciNet  Google Scholar 

  42. H. Russmann, “Addendum to invariant tori in non-degenerate nearly integrable Hamiltonian systems,” Regular Chaotic Dynamics, 10, No. 1, 21–32 (2005).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Viktor Koz’mich Mel’nikov, colleague and teacher, a talented Moscow mathematician, without whom the theory of dynamical systems would not be so attractive.

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 6, pp. 787–803, June, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prykarpats’kyi, Y.A. Mel’nikov-Samoilenko adiabatic stability problem. Ukr Math J 58, 887–903 (2006). https://doi.org/10.1007/s11253-006-0111-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0111-8

Keywords

Navigation