Skip to main content
Log in

On the theory of the Beltrami equation

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We study ring homeomorphisms and, on this basis, obtain a series of theorems on the existence of the so-called ring solutions for degenerate Beltrami equations. A general statement on the existence of solutions for the Beltrami equations that extends earlier results is formulated. In particular, we give new existence criteria for homeomorphic solutions f of the class W 1,1loc with f −1W 1,2loc in terms of tangential dilatations and functions of finite mean oscillation. The ring solutions also satisfy additional capacity inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Reich and H. Walczak, “On the behavior of quasiconformal mappings at a point,” Trans. Amer. Math. Soc., 117, 338–351 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  2. O. Lehto, “Homeomorphisms with a prescribed dilatation,” Lect. Notes Math., 118, 58–73 (1968).

    Article  MathSciNet  Google Scholar 

  3. V. Gutlyanskii, O. Martio, T. Sugawa, and M. Vuorinen, “On the degenerate Beltrami equation,” Trans. Amer. Math. Soc., 357, 875–900 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Ryazanov, U. Srebro, and E. Yakubov, “On ring solutions of Beltrami equation,” J. Anal. Math., 96, 117–150 (2005).

    MATH  MathSciNet  Google Scholar 

  5. V. Maz’ya, Sobolev Classes, Springer, Berlin-New York (1985).

    Google Scholar 

  6. F. W. Gehring and O. Lehto, “On the total differentiability of functions of a complex variable,” Ann. Acad. Sci. Fenn. Math. AI., 272, 1–9 (1959).

    MathSciNet  Google Scholar 

  7. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York (1973).

    MATH  Google Scholar 

  8. H. M. Reimann and T. Rychener, Funktionen Beschrankter Mittlerer Oscillation, Springer, Berlin (1975).

    Google Scholar 

  9. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Commun. Pure Appl. Math., 14, 415–426 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  10. K. Astala, “A remark on quasiconformal mappings and BMO-functions,” Mich. Math. J., 30, 209–212 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Astala and F. W. Gehring, “Injectivity, the BMO norm and the universal Teichmuller space,” J. Anal. Math., 46, 16–57 (1986).

    MATH  MathSciNet  Google Scholar 

  12. F. W. Gehring, Characteristic Properties of Quasidisk, Presses Univ. de Montreal, Montreal (1982).

    Google Scholar 

  13. P. M. Jones, “Extension theorems for BMO,” Indiana Univ. Math. J., 29, 41–66 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  14. O. Martio, V. Ryazanov, and M. Vuorinen, “BMO and injectivity of space quasiregular mappings,” Math. Nachr., 205, 149–161 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. M. Reimann, “Functions of bounded mean oscillation and quasiconformal mappings,” Comment. Math. Helv., 49, 260–276 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Astala, T. Iwaniec, P. Koskela, and G. Martin, “Mappings of BMO-bounded distortion,” Math. Ann., 317, 703–726 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Iwaniec, P. Koskela, and G. Martin, “Mappings of BMO-distortion and Beltrami type,” J. Anal. Math., 88, 337–381 (2002).

    MATH  MathSciNet  Google Scholar 

  18. T. Iwaniec and G. Martin, Geometrical Function Theory and Nonlinear Analysis, Clarendon Press, Oxford (2001).

    Google Scholar 

  19. S. Sastry, “Boundary behavior of BMO-QC automorphisms,” Isr. J. Math., 129, 373–380 (2002).

    MATH  MathSciNet  Google Scholar 

  20. D. Sarason, “Functions of vanishing mean oscillation,” Trans. Amer. Math. Soc., 207, 391–405 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Chiarenza, M. Frasca, and P. Longo, “W 2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients,” Trans. Amer. Math. Soc., 336, No. 2, 841–853 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Iwaniec and C. Sbordone, “Riesz transforms and elliptic PDEs with VMO coefficients,” J. Anal. Math., 74, 183–212 (1998).

    MATH  MathSciNet  Google Scholar 

  23. D. K. Palagachev, “Quasilinear elliptic equations with VMO coefficients,” Trans. Amer. Math. Soc., 347, No. 7, 2481–2493 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  24. M. A. Ragusa, “Elliptic boundary value problem in vanishing mean oscillation hypothesis,” Comment. Math. Univ. Carol., 40, No. 4, 651–663 (1999).

    MATH  MathSciNet  Google Scholar 

  25. H. Brezis and L. Nirenberg, “Degree theory and BMO. I. Compact manifolds without boundaries,” Selecta Math. (N. S.), 1, No. 2, 197–263 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Cianchi and L. Pick, “Sobolev embeddings into BMO, VMO, and L ,” Ark. Mat., 36, No. 2, 317–340 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  27. V. Ryazanov, U. Srebro, and E. Yakubov, “BMO-quasiconformal mappings,” J. Anal. Math., 83, 1–20 (2001).

    MATH  MathSciNet  Google Scholar 

  28. V. Ryazanov, U. Srebro, and E. Yakubov, “Plane mappings with dilatation dominated by functions of bounded mean oscillation,” Sib. Adv. Math., 11, No. 2, 94–130 (2001).

    MATH  MathSciNet  Google Scholar 

  29. A. Ignat’ev and V. Ryazanov, “Finite mean oscillation in the mapping theory,” Ukr. Math. Bull., 2, No. 3, 403–424 (2005).

    MathSciNet  Google Scholar 

  30. V. Ryazanov, U. Srebro, and E. Yakubov, “Finite mean oscillation and the Beltrami equation,” Isr. J. Math., 153, 247–266 (2006).

    MathSciNet  MATH  Google Scholar 

  31. V. Ryazanov, U. Srebro, E. Yakubov, “The Beltrami equation and FMO functions,” Contemp. Math., 2005, 382, 247–266.

    MathSciNet  Google Scholar 

  32. G. David, “Solutions de l’equation de Beltrami avec |μ| = 1,” Ann. Acad. Sci. Fenn. Ser. AI. Math. AI., 13, No. 1, 25–70 (1988).

    MATH  Google Scholar 

  33. P. Tukia, “Compactness properties of μ-homeomorphisms,” Ann. Acad. Sci. Fenn. Ser. AI. Math. AI., 16, No. 1, 47–69 (1991).

    MathSciNet  Google Scholar 

  34. M. A. Brakalova and J. A. Jenkins, “On solutions of the Beltrami equation,” J. Anal. Math., 76, 67–92 (1998).

    MATH  MathSciNet  Google Scholar 

  35. V. I. Kruglikov, “The existence and uniqueness of mappings that are quasiconformal in the mean,” in: Metric Questions of the Theory of Functions and Mappings, Naukova Dumka, Kiev (1973), pp. 123–147.

    Google Scholar 

  36. O. Martio and V. Miklyukov, “On existence and uniqueness of the degenerate Beltrami equation,” Complex Variables Theory Appl., 49, 647–656 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  37. V. M. Miklyukov and G. D. Suvorov, “On existence and uniqueness of quasiconformal mappings with unbounded characteristics,” in: Investigations in the Theory of Functions of Complex Variables and Its Applications, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1972).

    Google Scholar 

  38. I. N. Pesin, “Mappings quasiconformal in the mean,” Dokl. Akad. Nauk SSSR, 187, No. 4, 740–742 (1969).

    MathSciNet  Google Scholar 

  39. U. Srebro and E. Yakubov, “The Beltrami equation,” in: Complex Analysis, Geometry, Function Theory, Vol. 2, Elsevier, Amsterdam (2005), pp. 555–597.

    Google Scholar 

  40. S. Saks, Theory of the Integral, Dover, New York (1964).

    Google Scholar 

  41. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Q-homeomorphisms,” Contemp. Math., 364, 193–203 (2004).

    MathSciNet  Google Scholar 

  42. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. Anal. Math., 93, 215–236 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  43. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “On Q-homeomorphisms,” Ann. Acad. Sci. Fenn., 30, 49–69 (2005).

    MATH  MathSciNet  Google Scholar 

  44. F. W. Gehring, “A remark on the moduli of rings,” Comment. Math. Helv., 36, 42–46 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  45. J. Vaisala, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).

    Google Scholar 

  46. F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, 353–393 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  47. J. Heinonen and P. Koskela, “Sobolev mappings with integrable dilatations,” Arch. Ration. Mech. Anal., 125, 81–97 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  48. L. V. Ahlfors, Lectures on Quasiconformal Mappings, van Nostrand, Princeton (1966).

    MATH  Google Scholar 

  49. J. Dugundji, Topology, Allyn & Bacon, Boston (1966).

    MATH  Google Scholar 

  50. N. Dunford and J. T. Schwartz, Linear Operators. General Theory, Vol. 1, Interscience, New York-London (1957).

    Google Scholar 

  51. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, American Mathematical Society, Providence, RI (1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 11, pp. 1571–1583, November, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryazanov, V., Srebro, U. & Yakubov, E. On the theory of the Beltrami equation. Ukr Math J 58, 1786–1798 (2006). https://doi.org/10.1007/s11253-006-0168-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0168-4

Keywords

Navigation