Skip to main content
Log in

Jacobi matrices associated with the inverse eigenvalue problem in the theory of singular perturbations of self-adjoint operators

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We establish the relationship between the inverse eigenvalue problem and Jacobi matrices within the framework of the theory of singular perturbations of unbounded self-adjoint operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio and V. Koshmanenko, “Singular rank one perturbations of self-adjoint operators and Krein theory of self-adjoint extensions,” Potent. Anal., 11, 279–287 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators and Solvable Schrödinger Type Operators, Cambridge University Press, Cambridge (2000).

    Google Scholar 

  3. V. D. Koshmanenko, “Towards the rank-one singular perturbations of self-adjoint extensions,” Ukr. Mat. Zh., 43, No. 11, 1559–1566 (1991).

    MathSciNet  Google Scholar 

  4. V. D. Koshmanenko, Singular Bilinear Forms in Perturbation Theory of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1993).

    Google Scholar 

  5. V. Koshmanenko, “A variant of the inverse negative eigenvalue problem in singular perturbation theory,” Meth. Funct. Anal. Topol., 8, No. 1, 49–69 (2002).

    MATH  MathSciNet  Google Scholar 

  6. M. E. Dudkin and V. D. Koshmanenko, “On the point spectrum of self-adjoint operators that appears under singular perturbations of finite rank,” Ukr. Mat. Zh., 55, No. 9, 1269–1276 (2003).

    MATH  MathSciNet  Google Scholar 

  7. V. D. Koshmanenko and H. V. Tuhai, “On the structure of the resolvent of a singularly perturbed operator that solves an eigenvalue problem,” Ukr. Mat. Zh., 56, No. 9, 1292–1297 (2004).

    Article  MATH  Google Scholar 

  8. S. Albeverio, A. Konstantinov, and V. Koshmanenko, “On inverse spectral theory for singularly perturbed operator: point spectrum,” Inverse Probl., 21, 1871–1878 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Albeverio, M. Dudkin, A. Konstantinov, and V. Koshmanenko, “On the point spectrum of H −2 singular perturbations,” Math. Nachr., 280, No. 1–2, 1–8 (2005).

    MathSciNet  Google Scholar 

  10. L. Nizhnik, “The singular rank-one perturbations of self-adjoint operators” Meth. Funct. Anal. Topol., 7, No. 3, 54–66 (2001).

    MATH  MathSciNet  Google Scholar 

  11. Yu. M. Berezanskii, Expansion of Self-Adjoint Operators in Eigenfunctions [in Russian], Naukova Dumka, Kiev (1965).

    Google Scholar 

  12. V. Koshmanenko, “Singular operator as a parameter of self-adjoint extensions,” in: Proceedings of the Mark Krein International Conference on Operator Theory and Applications (Odessa, August 18–22, 1997), Birkhäuser, Basel (2000), pp. 205–223.

    Google Scholar 

  13. A. Posilicano, “A Krein-like formula for singular perturbations of self-adjoint operators and applications,” J. Funct. Anal., 183, 109–147 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  14. T. V. Karataeva and V. D. Koshmanenko, “A generalized sum of operators,” Mat. Zametki, 66, No. 5, 671–681 (1999).

    MathSciNet  Google Scholar 

  15. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1966).

    MATH  Google Scholar 

  16. M. G. Krein, “Theory of self-adjoint extensions of semibounded Hermitian operators and its applications. I,” Mat. Sb., 20(62), No. 3, 431–495 (1947).

    MathSciNet  Google Scholar 

  17. F. Gesztesy and B. Simon, “Rank-one perturbations at infinite coupling,” J. Funct. Anal., 128, 245–252 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  18. V. D. Koshmanenko, “Singular perturbations with infinite coupling constant,” Funkts. Anal. Prilozhen., 33, No. 2, 81–84 (1999).

    MathSciNet  Google Scholar 

  19. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1. Functional Analysis, Academic Press, New York (1972).

    Google Scholar 

  20. B. Simon, “The classical moment problem as a self-adjoint finite difference operator,” Adv. Math., 137, 82–203 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  21. Yu. M. Berezansky, “Some generalizations of the classical moment problem,” Integral Equat. Oper. Theory, 44, 255–289 (2002).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 12, pp. 1651–1662, December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koshmanenko, V.D., Tuhai, H.V. Jacobi matrices associated with the inverse eigenvalue problem in the theory of singular perturbations of self-adjoint operators. Ukr Math J 58, 1876–1890 (2006). https://doi.org/10.1007/s11253-006-0173-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0173-7

Keywords

Navigation