Skip to main content
Log in

On the Drift-Diffusion Model for a Two-Band Quantum Fluid at Zero Temperature

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

By using a scale transformation, we obtain hydrodynamic equations in the quasiclassical approximation from the two-band Schrodinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer, “Self-consistent study of the resonant-tunneling diode,” Phys. Rev. B, 39, No11, 7720–7735 (1989).

    Article  Google Scholar 

  2. M. Sweeney and J. M. Xu, “Resonant interband tunnel diodes,” Appl. Phys. Lett., 54, No6, 546–548 (1989).

    Google Scholar 

  3. R. Q. Yang, M. Sweeny, D. Day, and J. M. Xu, “Interband tunneling in heterostructure tunnel diodes,” IEEE Trans. Electron Devices., 38, No3, 442–446 (1991).

    Article  Google Scholar 

  4. L. Barletti, “Wigner envelope functions for electron transport in semiconductor devices,” Transp. Theory Statist. Phys., 32, No.3–4, 253–277 (2003).

    MATH  MathSciNet  Google Scholar 

  5. G. Borgioli, G. Frosali, and P. F. Zweifel, “Wigner approach to the two-band Kane model for a tunneling diode,” Transp. Theory Statist. Phys., 32, No.3–4, 347–366.

  6. L. Demeio, L. Barletti, A. Bertoni, P. Bordone, and C. Jacoboni, “Wigner function approach to multiband transport in semiconductors,” Physica B, 314, 104–107 (2002).

    Article  Google Scholar 

  7. L. Demeio, P. Bordone, and C. Jacoboni, “Numerical simulation of an intervalley transition by the Wigner-function approach,” Semiconductor Sci. Technol., 19,1–3 (2004).

    Google Scholar 

  8. M. Modugno and O. Morandi, A Multiband Envelope Function Model for Quantum Transport in a Tunneling Diode, Preprint (2004).

  9. E. O. Kane, “Energy band structure in p-type Germanium and Silicon,” J. Phys. Chem. Solids, 1, 82–89 (1956).

    Article  Google Scholar 

  10. E. O. Kane, “The k⋅p method,” in: R. K. Willardson and A. C. Bear (editors), Semiconductors and Semimetals, Vol. 1, Academic Press, New York (1966), pp. 75–100.

    Google Scholar 

  11. W. T. Wenckebach, Essentials of Semiconductor Physics, Wiley, Chichester (1999).

    Google Scholar 

  12. C. Y. Chao and S. L. Chuang, “Resonant tunneling of holes in the multiband effective-mass approximation,” Phys. Rev. B, 43, 7027–7039 (1991).

    Google Scholar 

  13. I. Gasser and P. Markowich, “Quantum hydrodynamics, Wigner transforms and the classical limit,” Asymptotic Analysis, 14, 97-116 (1997).

    Google Scholar 

  14. A. Jungel, Quasi-Hydrodynamic Semiconductor Equations, Birkhauser, Basel (2001).

    Google Scholar 

  15. G. Ali and G. Frosali, “On quantum hydrodynamic models for the two-band Kane system” (submitted).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 6, pp. 723–730, June, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, G., Frosali, G. & Manzini, C. On the Drift-Diffusion Model for a Two-Band Quantum Fluid at Zero Temperature. Ukr Math J 57, 859–868 (2005). https://doi.org/10.1007/s11253-005-0234-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-005-0234-3

Keywords

Navigation