Skip to main content
Log in

Best Approximations and Widths of Classes of Convolutions of Periodic Functions of High Smoothness

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We consider classes of 2π-periodic functions that are represented in terms of convolutions with fixed kernels Ψ β whose Fourier coefficients tend to zero at exponential rate. We determine exact values of the best approximations of these classes in the uniform and integral metrics. In several cases, we determine the exact values of the Kolmogorov, Bernstein, and linear widths for these classes in the metrics of the spaces C and L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1987).

    MATH  Google Scholar 

  2. J. Favard, “Sur l'approximation des fonctions periodiques par des polynomes trigonometriques,” C. R. Acad. Sci., 203, 1122–1124 (1936).

    MATH  Google Scholar 

  3. J. Favard, “Sur les meilleurs procedes d'approximations de certains classes de fonctions par des polynomes trigonometriques,” Bull. Sci. Math., 61, 209–224, 243–256 (1937).

    MATH  Google Scholar 

  4. N. I. Akhiezer and M. G. Krein, “On the best approximation of differentiable periodic functions by trigonometric sums,” Dokl. Akad. Nauk SSSR, 15, No.3, 107–112 (1937).

    Google Scholar 

  5. B. Nagy, “Uber gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I,” Periodischer Fall, Berichte der Math.-Phys., Kl. Acad. Wiss. Leipzig, 90, 103–134 (1938).

    MATH  Google Scholar 

  6. S. M. Nikol'skii, “Approximation of functions by trigonometric polynomials in the mean,” Izv. Akad. Nauk SSSR, Ser. Mat., 10, 207–256 (1946).

    Google Scholar 

  7. V. K. Dzyadyk, “On the best approximation on a class of periodic functions possessing a bounded s-derivative (0 < s < 1),” Izv. Akad. Nauk SSSR, Ser. Mat., 17, 135–162 (1953).

    MATH  MathSciNet  Google Scholar 

  8. V. K. Dzyadyk, “On the best approximation on classes of periodic functions defined by kernels that are integrals of absolutely monotone functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 23, 933–950 (1959).

    MATH  MathSciNet  Google Scholar 

  9. V. K. Dzyadyk, “On the best approximation on classes of periodic functions defined by integrals of a linear combination of absolutely monotone kernels,” Mat. Zametki, 16, No.5, 691–701 (1974).

    MATH  MathSciNet  Google Scholar 

  10. S. B. Stechkin, “On the best approximation of some classes of periodic functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 20, 643–648 (1956).

    MATH  MathSciNet  Google Scholar 

  11. S. B. Stechkin, “On the best approximation of conjugate functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 20, 197–206 (1956).

    MATH  MathSciNet  Google Scholar 

  12. Sun Yun-Shen, “On the best approximation of differentiable functions by trigonometric polynomials,” Usp. Mat. Nauk, 13, No.2, 238–241 (1958).

    Google Scholar 

  13. Sun Yun-Shen, “On the best approximation of periodic differentiable functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 23, 67–92 (1959).

    MathSciNet  Google Scholar 

  14. Sun Yun-Shen, “On the best approximation of periodic differentiable functions by trigonometric polynomials (the second part),” Izv. Akad. Nauk SSSR, Ser. Mat., 25, 143–152 (1961).

    MathSciNet  Google Scholar 

  15. M. G. Krein, “On the theory of the best approximation of periodic functions,” Dokl. Akad. Nauk SSSR, 18, No.4–5, 245–249 (1938).

    MATH  Google Scholar 

  16. A. V. Bushanskii, “On the best harmonic approximation in the mean of some functions,” in: Investigations in the Theory of Approximation of Functions and Their Applications [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1978), pp. 29–37.

    Google Scholar 

  17. V. T. Shevaldin, “Widths of classes of convolutions with Poisson kernel,” Mat. Zametki, 51, No.6, 126–136 (1992).

    MATH  MathSciNet  Google Scholar 

  18. Nguyen Thi Thieu Hoa, “The operator D(D 2 + 12)...(D 2 + n 2) and trigonometric interpolation,” Anal. Math., 15, 291–306 (1989).

    MathSciNet  Google Scholar 

  19. A. S. Serdyuk, “On the best approximation of classes of convolutions of periodic functions by trigonometric polynomials,” Ukr. at. Zh., 47, No.9, 1261–1265 (1995).

    MATH  MathSciNet  Google Scholar 

  20. A. S. Serdyuk, “Widths and the best approximations of classes of convolutions of periodic functions,” Ukr. Mat. Zh., 51, No.5, 674–687 (1999).

    MATH  MathSciNet  Google Scholar 

  21. A. S. Serdyuk, “On the best approximation on classes of convolutions of periodic functions,” in: Theory of Approximation of Functions and Related Problems [in Ukrainian], Institute of Mathematics, Ukrainian Academy of Sciences, Kyiv (2002), pp. 172–194.

    Google Scholar 

  22. N. I. Akhiezer, Lectures on Approximation Theory [in Russian], Gostekhteoretizdat, Moscow (1947).

    Google Scholar 

  23. A. N. Kolmogorov, “Uber die beste Annaherung von Functionen einer gegebenen Functionenklasse,” Ann. Math., 37, No.2, 107–110 (1936).

    MATH  MathSciNet  Google Scholar 

  24. V. M. Tikhomirov, “Widths of sets in functional spaces and approximation theory,” Usp. Mat. Nauk, 15, No.3, 82–120 (1960).

    MathSciNet  Google Scholar 

  25. K. Borsuk, “Drei Satze uber die n-dimensionale euklidische Sphare,” Fund. Math., 20, 177–190 (1933).

    MATH  Google Scholar 

  26. V. M. Tikhomirov, “The best methods of approximation and interpolation in the spaces C[−1, 1],” Mat. Sb., 80, No.2, 290–304 (1969).

    MATH  MathSciNet  Google Scholar 

  27. Yu. N. Subbotin, “Widths of the class W r L in L(0, 2π) and approximation by spline functions,” Mat. Sb., 7, No.1, 43–52 (1970).

    MATH  MathSciNet  Google Scholar 

  28. Yu. N. Subbotin, “Approximation by ‘spline’ functions and estimates for widths,” Tr. Mat. Inst. Akad. Nauk SSSR, 109, 35–60 (1971).

    MATH  MathSciNet  Google Scholar 

  29. Yu. I. Makovoz, “Widths of some functional classes in the space L,” Izv. Akad. Nauk Belorus. SSR, Ser. Fiz.-Mat., No. 4, 19–28 (1969).

  30. N. P. Korneichuk, Extremal Problems in Approximation Theory [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  31. S. Pinkus, “On n-widths of periodic functions,” J. Anal. Math., 35, 209–235 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  32. S. Pinkus, n-Widths in Approximation Theory, Springer, Berlin (1985).

    MATH  Google Scholar 

  33. A. A. Ligun, “On widths of some classes of differentiable periodic functions,” Mat. Zametki, 27, No.1, 61–75 (1980).

    MATH  MathSciNet  Google Scholar 

  34. Yu. I. Makovoz, “Widths of Sobolev classes and splines that least deviate from zero,” Mat. Zametki, 26, No.5, 805–812 (1979).

    MATH  MathSciNet  Google Scholar 

  35. A. K. Kushpel', “Exact estimates for widths of classes of convolutions,” Izv. Akad. Nauk SSSR, Ser. Mat., 52, No.6, 1305–1322 (1988).

    Google Scholar 

  36. A. K. Kushpel', “Estimates for widths of classes of convolutions in the spaces C and L,” Ukr. Mat. Zh., 41, No.8, 1070–1076 (1989).

    MATH  MathSciNet  Google Scholar 

  37. V. T. Shevaldin, “Widths of classes of convolutions with Poisson kernel,” Mat. Zametki, 51, No.6, 126–136 (1992).

    MATH  MathSciNet  Google Scholar 

  38. V. T. Shevaldin, “Lower bounds for widths of classes of periodic functions with bounded fractional derivative,” Mat. Zametki, 52, No.2, 145–151 (1993).

    MathSciNet  Google Scholar 

  39. A. I. Stepanets and A. S. Serdyuk, “Lower bounds for widths of classes of convolutions of periodic functions in the metrics of C and L,” Ukr. Mat. Zh., 47, No.8, 1112–1121 (1995).

    MathSciNet  MATH  Google Scholar 

  40. Nguyen Thi Thieu Hoa, Extremal Problems on Some Classes of Smooth Periodic Functions [in Russian], Doctoral-Degree Thesis (Physics and Mathematics), Moscow (1994).

  41. A. S. Serdyuk, “Estimates for widths and best approximations of classes of convolutions of periodic functions,” in: Fourier Series: Theory and Applications [in Ukrainian], Institute of Mathematics, Ukrainian Academy of Sciences, Kyiv (1998), pp. 286–299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 7, pp. 946–971, July, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serdyuk, A.S. Best Approximations and Widths of Classes of Convolutions of Periodic Functions of High Smoothness. Ukr Math J 57, 1120–1148 (2005). https://doi.org/10.1007/s11253-005-0251-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-005-0251-2

Keywords

Navigation