Skip to main content
Log in

LI-Yorke sensitivity and other concepts of chaos

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We give a survey of the theory of chaos for topological dynamical systems defined by continuous maps on compact metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. T. Y. Li and J. A. Yorke, “Period three implies chaos,” Amer. Math. Mon., 82, 985–992 (1975).

    Google Scholar 

  2. S. Kolyada, On Spatiotemporal Chaos, Preprint 02.26, Max-Planck-Institut für Mathematik, Bonn (2002).

    Google Scholar 

  3. E. Akin and S. Kolyada, “Li-Yorke sensitivity,” Nonlinearity, 16, 1421–1433 (2003).

    Google Scholar 

  4. L. Alseda, J. Llibre, and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, World Scientific, River Edge, NJ (1993).

    Google Scholar 

  5. L. Block and W. A. Coppel, Dynamics in One Dimension, Lect. Notes Math., 1513, Springer, Berlin (1992).

    Google Scholar 

  6. W. de Melo and S. J. van Strien, One-Dimensional Dynamics, Springer, Berlin (1993).

    Google Scholar 

  7. A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak, and V. V. Fedorenko, Dynamics of One-Dimensional Maps [in Russian], Naukova Dumka, Kiev (1989); English translation: Kluwer, Dordrecht-Boston-London (1997).

    Google Scholar 

  8. S. Kolyada and L. Snoha, “Some aspects of topological transitivity—a survey,” Grazer Math. Ber., Bericht., 334, 3–35 (1997).

    Google Scholar 

  9. S. Ruette, Chaos for Continuous Interval Maps—a Survey of Relationship between the Various Sorts of Chaos, Preprint (2003) (http://www.math.u-psud.fr/~ruette/abstracts/abstract-chaos-int.html).

  10. A. N. Sharkovskii, “Coexistence of cycles for continuous maps of the straight line into itself,” Ukr. Mat. Zh., 16, No.1, 61–71 (1964).

    Google Scholar 

  11. A. N. Sharkovskii, “On cycles and structure of a continuous map,” Ukr. Mat. Zh., 17, No.1, 104–111 (1965).

    Google Scholar 

  12. A. N. Sharkovskii, “Coexistence of cycles of a continuous map of the line into itself,” J. Tolosa. Int. J. Bifurc. Chaos Appl. Sci. Engrg., 5, No.5, 1263–1273 (1995).

    Google Scholar 

  13. J. Smítal, “Chaotic functions with zero topological entropy,” Trans. Amer. Math. Soc., 297, 269–282 (1986).

    Google Scholar 

  14. V. V. Fedorenko, A. N. Sharkovskii, and J. Smítal, “Characterizations of weakly chaotic maps of the interval,” Proc. Amer. Math. Soc., 110, 141–148 (1990).

    Google Scholar 

  15. K. Janková and J. Smítal, “A characterization of chaos,” Bull. Austral. Math. Soc., 34, 283–292 (1986).

    Google Scholar 

  16. M. Kuchta and J. Smítal, “Two point scrambled set implies chaos,” in: Eur. Conf. Iteration Theory (ECIT 87), World Scientific, Singapore (1989), pp. 427–430.

    Google Scholar 

  17. J. Piorek, “On the generic chaos in dynamical systems,” Univ. Iagel. Acta Math., 25, 293–298 (1985).

    Google Scholar 

  18. L. Snoha, “Generic chaos,” Comment. Math. Univ. Carol., 31, 793–810 (1990).

    Google Scholar 

  19. L. Snoha, “Dense chaos,” Comment. Math. Univ. Carol., 33, 747–752 (1992).

    Google Scholar 

  20. A. M. Bruckner and Hu Thakyin, “On scrambled sets for chaotic functions,” Trans. Amer. Math. Soc., 301, 289–297 (1987).

    Google Scholar 

  21. E. Akin, The General Topology of Dynamical Systems, Grad. Stud. Math., Vol. 1, American Mathematical Society, Providence, RI (1993).

    Google Scholar 

  22. J. Banks, “Regular periodic decompositions for topologically transitive maps,” Ergod. Theory Dynam. Syst., 17, 505–529 (1997).

    Google Scholar 

  23. S. Kinoshita, “On orbits of homeomorphisms,” Colloq. Math., 6, 49–53 (1958).

    Google Scholar 

  24. T. Downarowicz and X. Ye, “When every point is either transitive or periodic,” Colloq. Math., 93, 137–150 (2002).

    Google Scholar 

  25. J. Auslander, Minimal Flows and Their Extensions, North-Holland Math. Stud., Vol. 153, Elsevier, Amsterdam (1988).

    Google Scholar 

  26. R. Ellis, “A semigroup associated with a transformation group,” Trans. Amer. Math. Soc., 94, 272–281 (1960).

    Google Scholar 

  27. J. Auslander and J. Yorke, “Interval maps, factors of maps and chaos,” Tohoku Math. J., 32, 177–188 (1980).

    Google Scholar 

  28. E. Glasner and B. Weiss, “Sensitive dependence on initial conditions,” Nonlinearity, 6, 1067–1075 (1993).

    Google Scholar 

  29. E. Akin, J. Auslander, and K. Berg, “When is a transitive map chaotic?” in: Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), Vol. 5 (1996), pp. 25–40.

    Google Scholar 

  30. R. Adler, A. Konheim, and J. McAndrew, “Topological entropy,” Trans. Amer. Math. Soc., 114, 309–319 (1965).

    Google Scholar 

  31. P. Walters, An Introduction to Ergodic Theory, Grad. Texts Math., Vol. 79, Springer (1982).

  32. F. Blanchard, B. Host, and A. Maass, “Topological complexity,” Ergodic Theory Dynam. Syst., 20, 641–662 (2000).

    Google Scholar 

  33. F. Blanchard, E. Glasner, S. Kolyada, and A. Maass, “On Li-Yorke pairs,” J. Reine Angew. Math., 547, 51–68 (2002).

    Google Scholar 

  34. F. Blanchard, B. Host, and S. Ruette, “Asymptotic pairs in positive-entropy systems,” Ergod. Theory Dynam. Syst., 22, 671–686 (2002).

    Google Scholar 

  35. D. Ruelle and F. Takens, “On the nature of turbulence,” Commun. Math. Phys., 20, 167–192 (1971); 23, 343–344 (1971).

    Google Scholar 

  36. R. Devaney, Chaotic Dynamical Systems, Addison-Wesley, New York (1989).

    Google Scholar 

  37. W. Huang and X. Ye, “Devaney’s chaos or 2-scattering implies Li-Yorke chaos,” Topology Appl., 117, 259–272 (2002).

    Google Scholar 

  38. W. Gottschalk and G. Hedlund, Topological Dynamics, American Mathematical Society, Providence, RI (1955).

    Google Scholar 

  39. J. L. King, “A map with topological minimal self-joinings in the sense of del Junco,” Ergod. Theory Dynam. Syst., 10, 745–761 (1990).

    Google Scholar 

  40. H. Furstenberg, “Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation, ” Math. Syst. Theory, 1, 1–55 (1967).

    Google Scholar 

  41. S. Glasner and D. Maon, “Rigidity in topological dynamics,” Ergod. Theory Dynam. Syst., 9, 309–320 (1989).

    Google Scholar 

  42. V. Jiménez López and L. Snoha, “Stroboscopical property in topological dynamics,” Topology Appl., 129, 301–316 (2003).

    Google Scholar 

  43. A. Crannell, “A chaotic, non-mixing subshift,” Discrete Contin. Dynam. Systems., 1, 195–202 (1998).

    Google Scholar 

  44. E. Akin, Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions, Plenum, New York (1997).

    Google Scholar 

  45. S. Kolyada, L. Snoha, and S. Trofimchuk, “Noninvertible minimal maps,” Fund. Math., 168, 141–163 (2001).

    Google Scholar 

  46. B. Weiss, “Topological transitivity and ergodic measures,” Math. Syst. Theory, 5, 71–75 (1971).

    Google Scholar 

  47. E. Glasner and B. Weiss, “Locally equicontinuous dynamical systems,” Colloq. Math., 84/85, 345–361 (2000).

    Google Scholar 

  48. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Lect. Notes Math., 527, Springer, Berlin (1976).

    Google Scholar 

  49. E. Murinova, “Generic chaos in metric spaces,” Acta Univ. M. Belii Ser. Math., 8, 43–50 (2000).

    Google Scholar 

  50. E. Akin and E. Glasner, “Residual properties and almost equicontinuity,” J. Anal. Math., 84, 243–286 (2001).

    Google Scholar 

  51. A. Iwanik, “Independent sets of transitive points,” Dynam. Syst. Ergod. Theory, 23, 277–282 (1989).

    Google Scholar 

  52. J. Mycielski, “Independent sets in topological algebras,” Fund. Math., 55, 139–147 (1964).

    Google Scholar 

  53. W. Huang and X. Ye, Dynamical Systems Disjoint from Any Minimal System, Preprint (2003).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, No. 8, pp. 1043–1061, August, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolyada, S.F. LI-Yorke sensitivity and other concepts of chaos. Ukr Math J 56, 1242–1257 (2004). https://doi.org/10.1007/s11253-005-0055-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-005-0055-4

Keywords

Navigation