Skip to main content
Log in

Correction of nonlinear orthogonal regression estimator

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

For any nonlinear regression function, it is shown that the orthogonal regression procedure delivers an inconsistent estimator. A new technical approach to the proof of inconsistency based on the implicit-function theorem is presented. For small measurement errors, the leading term of the asymptotic expansion of the estimator is derived. We construct a corrected estimator, which has a smaller asymptotic deviation for small measurement errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. T. Boggs, H. R. Byrd, and R. B. Schnabel, “A stable and efficient algorithm for nonlinear orthogonal distance regression,” SIAM J. Sci. Comput., 8, No.6, 1052–1078 (1987).

    Google Scholar 

  2. H. Schwetlick and V. Tiller, “Numerical methods for estimating parameters in nonlinear models with errors in variables,” Technometrics, 27, No.1, 17–24 (1985).

    Google Scholar 

  3. P. T. Boggs and J. E. Rogers, “Orthogonal distance estimators,” Contemp. Math., 112, 183–194 (1990).

    Google Scholar 

  4. R. Strebel, D. Sourlier, and W. Gander, “A comparison of orthogonal least squares fitting in coordinate meteorology,” in: Recent Adv. Total Least Squares Techn. and Errors-in-Variables Modeling (Leuven, 1996), SIAM, Philadelphia (1997), pp. 249–258.

    Google Scholar 

  5. R. L. Branham, “Total least squares in astronomy,” in: Recent Adv. Total Least Squares Techn. and Errors-in-Variables Modeling (Leuven, 1996), SIAM, Philadelphia (1997), pp. 371–380.

    Google Scholar 

  6. W. H. Jefferys, “Robust estimation when more than one variable per equation of condition has error,” Biometrika, 77, No.3, 597–607 (1990).

    Google Scholar 

  7. S. van Huffel, “TLS applications in biometrical signal processing,” in: Recent Adv. Total Least Squares Techn. and Errors-in-Variables Modeling (Leuven, 1996), SIAM, Philadelphia (1997), pp. 307–318.

    Google Scholar 

  8. M. K. Mallick, “Applications of nonlinear orthogonal distance regression in 3D Motion estimation,” in: Recent Adv. Total Least Squares Techn. and Errors-in-Variables Modeling (Leuven, 1996), SIAM, Philadelphia (1997), pp. 273–284.

    Google Scholar 

  9. W. A. Fuller, Measurement Errors Models, Wiley, New York (1987).

    Google Scholar 

  10. S. Zwanzig, Estimation in Nonlinear Functional Errors-in-Variables Models, Habilitation, Univ. Hamburg (1998).

  11. K. M. Wolter and W. A. Fuller, “Estimation of nonlinear errors-in-variables models,” Ann. Statist., 10, No.2, 539–548 (1982).

    Google Scholar 

  12. L. A. Stefanski, “The effect of measurement error on parameter estimation,” Biometrika, 72, No.3, 583–592 (1985).

    Google Scholar 

  13. L. A. Stefanski and R. J. Carroll, “Covariate measurement error in logistic regression,” Ann. Statist., 13, No.4, 1335–1351 (1985).

    Google Scholar 

  14. N. J. D. Nagelkerke, “Maximum likelihood estimation of functional relationship,” in: Lect. Notes Statist., 69 (1992).

  15. B. Armstrong, “Measurement error in the generalized linear model,” Commun. Statist.-Simula. Computa, 14, No.3, 529–544 (1985).

    Google Scholar 

  16. D. W. Schafer, “Covariate measurement error in generalized linear models,” Boimetrika, 72, No.3, 583–592 (1987).

    Google Scholar 

  17. L. T. M. E. Hillegers, The Estimation in Functional Relationship Models, Proefschrift, Techn. Univ., Eindhoven (1986).

    Google Scholar 

  18. Y. Amemiya, “Generalization of the TLS approach in the errors-in-variables problem,” in: Recent Adv. Total Least Squares Techn. and Errors-in-Variables Modeling (Leuven, 1996), SIAM, Philadelphia (1997), pp. 77–86.

    Google Scholar 

  19. L. J. Gleser, “Some new approaches to estimation in linear and nonlinear errors-in-variables regression models,” in: Recent Adv. Total Least Squares Techn. and Errors-in-Variables Modeling (Leuven, 1996), SIAM, Philadelphia (1997), pp. 69–76.

    Google Scholar 

  20. A. G. Kukush and S. Zwanzig, “On the adaptive minimum contrast estimator in a model with nonlinear functional relations,” Ukr. Mat. Zh., 53, No.9, 1204–1209 (2001).

    Google Scholar 

  21. R. J. Carroll, C. H. Spiegelman, G. K. K. Lan, K. T. Bailey, and R. D. Abbott, “On errors-in-variables for binary regression models,” Biometrika, 71, No.1, 1925–1984 (1984).

    Google Scholar 

  22. L. A. Stefanski, “Correcting data for measurement errors in generalized linear models,” Commun. Statist. Theory Meth., 18, No.5, 1715–1733 (1989).

    Google Scholar 

  23. Y. Amemiya and W. F. Fuller, “Estimation for the nonlinear functional relationship,” Ann. Statist., 16, No.1, 147–160 (1988).

    Google Scholar 

  24. I. Fazekas, A. G. Kukush, and S. Zwanzig, On Inconsistency of the Least Squares Estimator in Nonlinear Functional Relations, Preprint No. 1, Odense Univ., Denmark (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, No. 8, pp. 1101–1118, August, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazekas, I., Kukush, A. & Zwanzig, S. Correction of nonlinear orthogonal regression estimator. Ukr Math J 56, 1308–1330 (2004). https://doi.org/10.1007/s11253-005-0059-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-005-0059-0

Keywords

Navigation