Skip to main content
Log in

Estimation of the best approximation of periodic functions of two variables by an “angle” in the metric of L p

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We obtain upper bounds in terms of Fourier coefficients for the best approximation by an “angle” and for norms in the metric of L p for functions of two variables defined by trigonometric series with coefficients such that \(a_{l_1 l_2 } \to 0\) as l 1 + l 2 → ∞ and

$$\mathop \sum \limits_{k_1 = 0}^\infty \mathop \sum \limits_{k_2 = 0}^\infty \left( {\mathop \sum \limits_{l_1 = k_1 }^\infty \mathop \sum \limits_{l_2 = k_2 }^\infty \left| {\Delta ^{12} a_{l_1 \;l_2 } } \right|} \right)^p (k_1 + 1)^{p - 2} \;(k_2 + 1)^{p - 2} < \infty$$

for a certain p, 1 < p < ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. A. Konyushkov, “Best approximations by trigonometric polynomials and Fourier coefficients,” Mat. Sb., 44, No.1, 53–84 (1958).

    Google Scholar 

  2. R. E. Edwards, Fourier Series. A Modern Introduction [Russian translation], Vol. 2, Mir, Moscow (1985).

    Google Scholar 

  3. T. O. Kononovych, “Estimate for the best approximation of periodic functions in the metric of L p , ” in: Extremal Problems in the Theory of Functions and Related Problems [in Ukrainian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2003), pp. 83–88.

    Google Scholar 

  4. R. E. Edwards, Fourier Series. A Modern Introduction [Russian translation], Vol. 1, Mir, Moscow (1985).

    Google Scholar 

  5. F. Moricz, “On double cosine, sine and Walsh series with monotone coefficients,” Proc. Amer. Math. Soc., 109, No.2, 417–425 (1990).

    Google Scholar 

  6. T. M. Vukolova and M. I. D’yachenko, “Estimates for norms of double trigonometric series with multiply monotone coefficients,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 386, No.7, 20–28 (1994).

    Google Scholar 

  7. T. M. Vukolova, On Structural Properties of Functions Representable by Trigonometric Series in Cosines with Monotone Coefficients [in Russian], Dep. in VINITI, No. 7049-V88, Moscow (1988).

    Google Scholar 

  8. P. V. Zaderei, “On integrability conditions for multiple trigonometric series,” Ukr. Mat. Zh., 44, No.3, 340–365 (1992).

    Google Scholar 

  9. N. K. Bari, Trigonometric Series [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  10. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University, Cambridge (1934).

    Google Scholar 

  11. A. A. Talalyan, “On the uniqueness of double trigonometric series,” Izv. Akad. Nauk Arm. SSR, Ser. Mat., 20, No.6, 426–462 (1985).

    Google Scholar 

  12. A. A. Talalyan, “On some uniqueness properties of multiple trigonometric series and harmonic functions, ” Izv. Akad. Nauk SSSR, Ser. Mat., 52, No.3, 621–650 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, No. 9, pp. 1182–1192, September, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kononovych, T.O. Estimation of the best approximation of periodic functions of two variables by an “angle” in the metric of L p . Ukr Math J 56, 1403–1416 (2004). https://doi.org/10.1007/s11253-005-0124-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-005-0124-8

Keywords

Navigation