On the cardinality of a reduced unique range set

  • B. Chakraborty Ramakrishna Mission Vivekananda Centenary College
Keywords: Meromorphic function, URSM, Set Sharing, Ignoring Multiplicities

Abstract

UDC 517.5
Two meromorphic functions are said to share a set $S\subset \mathbb{C}\cup\{\infty\}$ ignoring multiplicities (IM) if $S$ has the same pre-images under both functions.
If any two nonconstant meromorphic functions, sharing a set IM, are identical, then the set is called a “reduced unique range set for meromorphic functions'' (in short, RURSM or URSM-IM).

From the existing literature, it is known that there exists a RURSM with seventeen elements. In this article, we reduced the cardinality of an existing RURSM and established that there exists a RURSM with fifteen elements. Our result gives an affirmative answer to the question of L. Z. Yang
(Int. Soc. Anal., Appl., and Comput., 7, 551–564 (2000)).

References

S. Bartels, Meromorphic functions sharing a set with 17 elements ignoring multiplicities, Complex Variables, Theory and Appl., 39 , 85 – 92 (1999), https://doi.org/10.1080/17476939908815183

M. L. Fang, H. Guo, On unique range sets for meromorphic or entire functions, Acta Math. Sin. (New Ser.), 14 , № 4, 569 – 576 (1998), https://doi.org/10.1007/BF02580416

G. Frank, M.Reinders, A unique range set for meromorphic function with 11 elements, Complex Variables, Theory and Appl., 37 , № 1-4, 185 – 193 (1998), https://doi.org/10.1080/17476939808815132

H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math, 122 , № 6, 1175 – 1203 (2000).

H. Fujimoto, On uniqueness polynomials for meromorphic functions, Nagoya Math. J., 170 , № 6, 33 – 46 (2003), https://doi.org/10.1017/S0027763000008527

F. Gross, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Leixngton, Ky (1976); Lect. Notes Math., 599 , 51 – 69 (1977).

F. Gross, C. C. Yang, On preimage and range sets of meromorphic functions, Proc. Japan Acad., 58, № 1, 17 – 20 (1982).

W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford (1964).

P. C. Hu, P. Li, C. C. Yang, Unicity of meromorphic mappings, Springer, https://doi.org/10.1007/978-1-4757-3775-2

P. Li, C. C. Yang, Some further results on the unique range set of meromorphic functions, Kodai Math. J., 18 , № 3, 437 – 450 (1995), https://doi.org/10.2996/kmj/1138043482

P. Li, C. C. Yang, On the unique range set for meromorphic functions, Proc. Amer. Math. Soc., 124 , № 1, 177 – 185 (1996), https://doi.org/10.1090/S0002-9939-96-03045-6

M. Reinders, Unique range sets ignoring multiplicities, Bull. Hong Kong Math. Soc., 1 , № 2, 339 – 341 (1997).

C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Acad. Publ. (2003), https://doi.org/10.1007/978-94-017-3626-8

L. Z. Yang, Some recent progress in the uniqueness theory of meromorphic functions, Proc. Second ISAAC Congr., Int. Soc. Anal., Appl. and Comput., 7 , 551 – 565 (2000), https://doi.org/10.1007/978-1-4613-0269-8_64

H. X. Yi, Unicity theorems for meromorphic and entire functions III, Bull. Austrl. Math. Soc., 53 , № 1, 71 – 82 (1996), https://doi.org/10.1017/S0004972700016737

H. X. Yi, The reduced unique range sets for entire or meromorphic functions, Complex Variables, Theory and Appl., 32 , № 3, 191 – 198 (1997), https://doi.org/10.1080/17476939708814990

H. X. Yi, On the reduced range sets for meromorphic functions, J. Shandomg Univ., 33 , № 4, 361 – 368 (1998).

Published
20.11.2020
How to Cite
ChakrabortyB. “ On the Cardinality of a Reduced Unique Range Set”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 11, Nov. 2020, pp. 1553-6, doi:10.37863/umzh.v72i11.594.
Section
Research articles