A classification of conformal vector fields on the tangent bundle

  • Zohre Raei Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran
  • Dariush Latifi Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran https://orcid.org/0000-0002-3468-5453
Keywords: Fibre-preserving vector field, Infinitesimal conformal transformation, Lift metric

Abstract

UDC 514.7

Let $(M,g)$ be a Riemannian manifold and $TM$ be its tangent bundle equipped with a Riemannian (or pseudo-Riemannian) lift metric derived from $g.$ We give a classification of infinitesimal fibre-preserving conformal transformations on the tangent bundle.

References

Abbassi, Mohamed Tahar Kadaoui; Sarih, Maâti. Killing vector fields on tangent bundles with Cheeger–Gromoll metric. Tsukuba J. Math. 27 (2003), no. 2, 295–306. https://doi.org/10.21099/tkbjm/1496164650

Bidabad, Behroz. Conformal vector fields on tangent bundle of Finsler manifolds. Balkan J. Geom. Appl. 11 (2006), no. 2, 28–35. https://www.emis.de/journals/BJGA/v11n2/B11-2-BI.pdf

Gezer, Aydin. On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric. Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 3, 345–350. https://doi.org/10.1007/s12044-009-0033-0

Gezer, Aydin; Bilen, Lokman. On infinitesimal conformal transformations with respect to the Cheeger–Gromoll metric. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 20 (2012), no. 1, 113–127. https://doi.org/10.2478/v10309-012-0009-4

Gezer, Aydin; Özkan, Mustafa. Notes on the tangent bundle with deformed complete lift metric. Turkish J. Math. 38 (2014), no. 6, 1038–1049. https://doi.org/10.3906/mat-1402-30

Hasegawa, Izumi; Yamauchi, Kazunari. Infinitesimal conformal transformations on tangent bundles with the lift metric I+II. Japanese Association of Mathematical Sciences 2001 Annual Meeting (Tennoji). Sci. Math. Jpn. 57 (2003), no. 1, 129–137. http://www.jams.or.jp/scm/contents/Vol-7-5/7-49.pdf

Peyghan, Esmaeil; Nasrabadi, Hassan; Tayebi, Akbar. The homogeneous lift to the (1,1)-tensor bundle of a Riemannian metric. Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 4, 1350006, 18 pp. https://doi.org/10.1142/s0219887813500060

Peyghan, E.; Naderifard, A.; Tayebi, A. Almost paracontact structures on tangent sphere bundle. Int. J. Geom. Methods Mod. Phys 10 (2013), no. 9, 1320015, 11 pp. https://doi.org/10.1142/s0219887813200156

Peyghan, E.; Tayebi, A.; Nourmohammadifar, L. Cheeger–Gromoll type metrics on the (1,1)-tensor bundles.; translated from Izv. Nats. Akad. Nauk Armenii Mat. 48 (2013), no. 6, 59–70. J. Contemp. Math. Anal. 48 (2013), no. 6, 247–258 https://doi.org/10.3103/s1068362313060022

Peyghan, Esmaeil; Tayebi, Akbar; Zhong, ChunPing. Foliations on the tangent bundle of Finsler manifolds. Sci. China Math. 55 (2012), no. 3, 647–662. https://doi.org/10.1007/s11425-011-4288-4

Peyghan, Esmaeil; Tayebi, Akbar; Zhong, Chunping. Horizontal Laplacian on tangent bundle of Finsler manifold with g-natural metric. Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 7, 1250061, 18 pp. https://doi.org/10.1142/s0219887812500612

Peyghan, E.; Tayebi, A. Finslerian complex and Kählerian structures. Nonlinear Anal. Real World Appl. 11 (2010), no. 4, 3021–3030. https://doi.org/10.1016/j.nonrwa.2009.10.022

Peyghan, Esmaeil; Tayebi, Akbar. On Finsler manifolds whose tangent bundle has the g-natural metric. Int. J. Geom. Methods Mod. Phys. 8 (2011), no. 7, 1593–1610. https://doi.org/10.1142/s0219887811005828

Peyghan, Esmaeil; Tayebi, Akbar. Killing vector fields of horizontal Liouville type. C. R. Math. Acad. Sci. Paris 349 (2011), no. 3-4, 205–208. https://doi.org/10.1016/j.crma.2011.01.009

Tayebi, Akbar; Peyghan, Esmaeil. On a class of Riemannian metrics arising from Finsler structures. C. R. Math. Acad. Sci. Paris 349 (2011), no. 5-6, 319–322. https://doi.org/10.1016/j.crma.2011.01.021

Salimov, Arif; Gezer, Aydin. On the geometry of the (1,1)-tensor bundle with Sasaki type metric. Chin. Ann. Math. Ser. B 32 (2011), no. 3, 369–386. https://doi.org/10.1007/s11401-011-0646-3

Salimov, A. A.; Iscan, M.; Akbulut, K. Notes on para-Norden-Walker 4-manifolds. Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 8, 1331–1347. https://doi.org/10.1142/s021988781000483x

Salimov, A. A.; Akbulut, K.; Aslanci, S. A note on integrability of almost product Riemannian structures. Arab. J. Sci. Eng. Sect. A Sci. 34 (2009), no. 1, 153–157. https://www.researchgate.net/publication/266678391_A_note_on_integrability_of_almost_product_riemannian_structures

Tanno, Shûkichi. Killing vectors and geodesic flow vectors on tangent bundles. J. Reine Angew. Math. 282 (1976), 162–171. https://doi.org/10.1515/crll.1976.282.162

Yamauchi, K. On a infinitesimal conformal transformations of the tangent bundles with the metric I+III over Riemannian manifold, Ann. Rep. Asahikawa Med. Coll., 16 (1995), 1–6.

Yamauchi, K. On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds, Ann. Rep. Asahikawa Med. Coll., 15 (1994), 1–10 (1994).

Yano, Kentaro; Ishihara, Shigeru. Tangent and cotangent bundles: differential geometry. Pure and Applied Mathematics, No. 16. Marcel Dekker, Inc., New York, 1973. {rm ix}+423 pp. https://www.worldcat.org/title/tangent-and-cotangent-bundles-differential-geometry/oclc/713986

Published
29.04.2020
How to Cite
RaeiZ., and LatifiD. “A Classification of Conformal Vector Fields on the Tangent Bundle”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 5, Apr. 2020, pp. 694–704, doi:10.37863/umzh.v72i5.6013.
Section
Research articles