Some refinements of numerical radius inequalities

  • Z. Heydarbeygi Mashhad Branch, Islamic Azad Univ., Iran
  • M. Amyari Mashhad Branch, Islamic Azad Univ., Iran
  • M. Khanehgir Mashhad Branch, Islamic Azad Univ., Iran

Abstract

UDC 517.5

In this paper, we give some refinements for the second inequality in $\dfrac{1}{2}\|A\| \leq w(A) \leq \|A\|,$  where $A\in B(H).$  In particular, if $A$ is hyponormal by refining the Young inequality with the Kantorovich constant $K(\cdot, \cdot),$  we show that $w(A)\leq \dfrac{1}{\displaystyle {2\inf\nolimits_{\| x \|=1}}\zeta(x)}\| |A|+|A^{*}|\|\leq \dfrac{1}{2}\| |A|+|A^*|\|,$  where $\zeta(x)=K\left(\dfrac{\langle |A|x,x \rangle}{\langle |A^{*}|x,x \rangle},2\right)^{r},$ $r=\min\{\lambda,1-\lambda\}$ and $0\leq \lambda \leq 1$ . We also give a reverse for the classical numerical radius power inequality $w(A^{n})\leq w^{n}(A)$ for any operator $A \in B(H)$ in the case when $n=2.$ 

References

M. Boumazgour, A. H. Nabwey, A note concerning the numerical range of a basic elementary operator, Ann. Funct. Anal., 7, № 3, 434 – 441 (2016), https://doi.org/10.1215/20088752-3605510

S. S. Dragomir, A note on numerical radius and the Krein – Lin inequality, RGMIA Res. Rep. Collect., 18, Article 113 (2015).

S. S. Dragomir, A note on new refinements and reverses of Young’s inequality, Transylv. J. Math. and Mech., 8, № 1, 45 – 49 (2016).

S. S. Dragomir, Some Gru"ss type inequalities in inner product spaces, J. Inequal. Pure and Appl. Math., 4, № 2, Article 42 (2003), 10 p.

S. S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math., 39, № 1, 1 – 7 (2008).

R. Golla, On the numerical radius of a quaternionic normal operator, Adv. Oper. Theory, 2, № 1, 78 – 86 (2017), https://doi.org/10.22034/aot.1611-1060

M. Fuji, H. Zuo, G. Shi, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5, № 4, 551 – 556 (2011), https://doi.org/10.7153/jmi-05-47

F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. and Appl., 361, № 1, 262 – 269 (2010), https://doi.org/10.1016/j.jmaa.2009.08.059

F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear and Multilinear Algebra, 59, no. 9, 1031 – 1037 (2011), https://doi.org/10.1080/03081087.2010.551661

F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Stud. Math., 158, № 1, 11 – 17 (2003), https://doi.org/10.4064/sm158-1-2

M. G. Krein, The angular localization of the spectrum of a multiplicative integral in Hilbert space (in Russian), Funkcional. Anal. i Prilozhen., 3, no. 1, 89 – 90 (1969).

M. Satari, M. S. Moslehian, T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra and Appl., 470, 216 – 227 (2015).

A. Sheikhhosseini, M. S. Moslehian, K. Shebrawi, Inequalities for generalized Euclidean operator radius via Young’s inequality, J. Math. Anal. and Appl., 445, № 2, 1516 – 1529 (2017).

A. Zamani, Some lower bounds for the numerical radius of Hilbert space operators, Adv. Oper. Theory, 2, № 2, 98 – 107 (2017).

Published
25.10.2020
How to Cite
HeydarbeygiZ., AmyariM., and KhanehgirM. “Some Refinements of Numerical Radius Inequalities”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 10, Oct. 2020, pp. 1443 -51, doi:10.37863/umzh.v72i10.6027.
Section
Research articles