The Birman–Hilden property of covering spaces of nonorientable surfaces

  • F. Atalan Dep. Math., Atilim Univ., Ankara, Turke
  • E. Medetogullari Dep. Math., TED Univ., Ankara, Turkey

Abstract

UDC 517.5

Let $p: \widetilde{N} \rightarrow N$ be a finite covering space of nonorientable surfaces, where $\chi(\widetilde{N}) < 0$. We search whether or not $p$ has the Birman–Hilden property.

 

References

Aramayona, Javier; Leininger, Christopher J.; Souto, Juan. Injections of mapping class groups. Geom. Topol. 13 (2009), no. 5, 2523--2541. doi: 10.2140/gt.2009.13.2523

Birman, Joan S.; Hilden, Hugh M. Lifting and projecting homeomorphisms. Arch. Math. (Basel) 23 (1972), 428--434. doi: 10.1007/BF01304911

Birman, Joan S.; Hilden, Hugh M. On isotopies of homeomorphisms of Riemann surfaces. Ann. of Math. (2) 97 (1973), 424--439. doi: 10.2307/1970830

Birman, Joan S.; Wajnryb, Bronislaw. $3$-fold branched coverings and the mapping class group of a surface. Geometry and topology (College Park, Md., 1983/84), 24--46, Lecture Notes in Math., 1167, Springer, Berlin, 1985. doi: 10.1007/BFb0075214

Fuller, Terry. On fiber-preserving isotopies of surface homeomorphisms. Proc. Amer. Math. Soc. 129 (2001), no. 4, 1247--1254. doi: 10.1090/S0002-9939-00-05642-2

Maclachlan, C.; Harvey, W. J. On mapping-class groups and Teichmüller spaces. Proc. London Math. Soc. (3) 30 (1975), no. part, part 4, 496--512. doi: 10.1112/plms/s3-30.4.496

D. Margalit, R. R. Winarski,The Birman – Hilden Theory, (2017).https://arxiv.org/abs/1703.03448 .

Winarski, Rebecca R. Symmetry, isotopy, and irregular covers. Geom. Dedicata 177 (2015), 213--227. doi: 10.1007/s10711-014-9986-y

Wu, Ying Qing. Canonical reducing curves of surface homeomorphism. Acta Math. Sinica (N.S.) 3 (1987), no. 4, 305--313. doi: /10.1007/BF02559911

Published
28.03.2020
How to Cite
Atalan, F., and E. Medetogullari. “The Birman–Hilden Property of Covering Spaces of Nonorientable Surfaces”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 3, Mar. 2020, pp. 307-15, doi:10.37863/umzh.v72i3.6044.
Section
Research articles