On series of orthogonal polynomials and systems of classical type polynomials

Keywords: Sobolev orthogonal polynomials, polynomial kernel, differential equations


UDC 517.587

If $\displaystyle\sum\nolimits_{k=0}^\infty c_k g_k(x),$ is a formal series of orthonormal polynomials $g_k(x)$ on the real line that has positive coefficients $c_k,$ then its partial sums $u_n(x)$ are associated with Jacobi type pencils.
Therefore, they possess a recurrence relation and special orthonormality conditions.
The cases where $g_k(x)$ are Jacobi or Laguerre polynomials will be of a special interest.
For a suitable choice of parameters~$c_k,$ the partial sums $u_n(x)$ are Sobolev orthogonal polynomials with a $(3\times 3)$ matrix measure.
A~further selection of parameters gives differential equations for $u_n.$
In this case, polynomials $u_n(x)$ are solutions to generalized eigenvalue problems both in $x$ and in $n.$


N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publ. Co., New York (1965).

A. Erd´elyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Vols. I, II, McGraw-Hill Book Co., Inc., New York etc. (1953).

T. S. Chihara, An introduction to orthogonal polynomials, Math. and its Appl., Vol. 13, Gordon and Breach Sci. Publ., New York etc. (1978).

A. E. Choque Rivero, S. M. Zagorodnyuk, Orthogonal polynomials on rays: Christoffel’s formula, Bol. Soc. Mat. Mex., 15, № 3, 149 – 164 (2009).

R. S. Costas-Santos, J. J. Moreno-Balc´azar, The semiclassical Sobolev orthogonal polynomials: a general approach, J. Approx. Theory, 163, № 1, 65 – 83 (2011), https://doi.org/10.1016/j.jat.2010.03.001 DOI: https://doi.org/10.1016/j.jat.2010.03.001

A. J. Dur´an, W. Van Assche, Orthogonal matrix polynomials and higher-order recurrence relations, Linear Algebra and Appl., 219, 261 – 280 (1995), https://doi.org/10.1016/0024-3795(93)00218-O DOI: https://doi.org/10.1016/0024-3795(93)00218-O

W. D. Evans, L. L. Littlejohn, F. Marcell´an, C. Markett, A. Ronveaux, On recurrence relations for Sobolev orthogonal polynomials, SIAM J. Math. Anal., 26, № 2, 446 – 467 (1995), https://doi.org/10.1137/S0036141092226922 DOI: https://doi.org/10.1137/S0036141092226922

G. Freud, Orthogonal polynomials, Pergamon Press, Oxford etc. (1971).

M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia Math. and Appl., 98, Cambridge Univ. Press, Cambridge (2005), https://doi.org/10.1017/CBO9781107325982 DOI: https://doi.org/10.1017/CBO9781107325982

J. Koekoek, R. Koekoek, H. Bavinck, On differential equations for Sobolev-type Laguerre polynomials, Trans. Amer. Math. Soc., 350, № 1, 347 – 393 (1998), https://doi.org/10.1090/S0002-9947-98-01993-X DOI: https://doi.org/10.1090/S0002-9947-98-01993-X

R. Koekoek, H. G. Meijer, A generalization of Laguerre polynomials, SIAM J. Math. Anal., 24, № 3, 768 – 782 (1993), https://doi.org/10.1137/0524047 DOI: https://doi.org/10.1137/0524047

L. L. Littlejohn, J. F. Ma˜nas-Ma˜nas, J. J. Moreno-Balc´azar, R. Wellman, Differential operator for discrete

Gegenbauer – Sobolev orthogonal polynomials: eigenvalues and asymptotics, J. Approx. Theory, 230, 32 – 49 (2018), https://doi.org/10.1016/j.jat.2018.04.008 DOI: https://doi.org/10.1016/j.jat.2018.04.008

F. Marcell´an, Y. Xu, On Sobolev orthogonal polynomials, Expo. Math., 33, № 3, 308 – 352 (2015), https://doi.org/10.1016/j.exmath.2014.10.002 DOI: https://doi.org/10.1016/j.exmath.2014.10.002

G. V. Milovanovi´c, Orthogonal polynomials on the radial rays in the complex plane and applications, Proc. Fourth Intern. Conf. Funct. Anal. and Approx. Theory, vol. I (Potenza, 2000), Rend. Circ. Mat. Palermo (2) Suppl., № 68, part I, 65 – 94 (2002).

P. G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc., 18, № 213 (1979), https://doi.org/10.1090/memo/0213 DOI: https://doi.org/10.1090/memo/0213

P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, 3-е Izdat. ``Nauka'', Moscow (2005).

G. Szeg¨o, Orthogonal polynomials, fourth ed., Colloq. Publ., 23, Amer. Math. Soc., Providence, R.I. (1975).

S. M. Zagorodnyuk, Ortogonal`ny`e mnogochleny`, assocziirovanny`e s nekotory`mi puchkami yakobievogo tipa, Ukr. mat. zhurn., 68, № 9, 1180 – 1190 (2016).

S. M. Zagorodnyuk, The inverse spectral problem for Jacobi-type pencils, SIGMA Symmetry Integrability Geom. Methods and Appl., 13, Paper 085 (2017), 16 p., https://doi.org/10.3842/SIGMA.2017.085 DOI: https://doi.org/10.3842/SIGMA.2017.085

S. M. Zagorodnyuk, Difference equations related to Jacobi-type pencils, J. Difference Equat. and Appl., 24, № 10, 1664 – 1684 (2018), https://doi.org/10.1080/10236198.2018.1515929 DOI: https://doi.org/10.1080/10236198.2018.1515929

S. M. Zagorodnyuk, On some classical type Sobolev orthogonal polynomials, J. Approx. Theory, 250, Article 105337 (2020), https://doi.org/10.1016/j.jat.2019.105337 DOI: https://doi.org/10.1016/j.jat.2019.105337

S. M. Zagorodnyuk, On some Sobolev spaces with matrix weights and classical type Sobolev orthogonal polynomials, J. Difference Equat. and Appl., 27, № 2, 261 – 283 (2021), https://doi.org/10.1080/10236198.2021.1887160 DOI: https://doi.org/10.1080/10236198.2021.1887160

A. Zhedanov, Biorthogonal rational functions and the generalized eigenvalue problem, J. Approx. Theory, 101, № 2, 303 – 329 (1999), https://doi.org/10.1006/jath.1999.3339 DOI: https://doi.org/10.1006/jath.1999.3339

How to Cite
Zagorodnyuk, S. M. “On Series of Orthogonal Polynomials and Systems of Classical Type Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 6, June 2021, pp. 799 -10, doi:10.37863/umzh.v73i6.6527.
Research articles