Periodic Coulomb dynamics of two equal negative charges in the field of four equal positive fixed charges

  • W. I. Skrypnik Institute of Mathematics of the National Academy of sciences of Ukraine

Abstract

UDC 517.9

We found periodic solutions of the Coulomb $d$-dimensional $(d=1,2,3)$ equation of motion for two equal negative point charges in the field of four equal positive point charges fixed at vertices of a parallelepiped.
These systems possess an equilibrium configuration.
The periodic solutions are obtained with the help of Lyapunov's central theorem.

References

W. Skrypnik, Periodic and bounded solutions of the Coulomb equation of motion of two and three point charges with equilibrium on line, Ukr Math. J., 66, № 5, 668 – 682 (2014), https://doi.org/10.1007/s11253-014-0970-3

W. Skrypnik, Кулонiвська динамiка двох та трьох рiвних вiд’ємних зарядiв на площинi у полi фiксованих двох рiвних додатних зарядiв (Russian) [[Kulonivs`ka dinamika dvokh ta tr`okh rivnikh vid'yemnikh zaryadiv na ploshhini u poli fiksovanikh dvokh rivnikh dodatnikh zaryadiv]], Ukr. mat. zhurn., 68, № 11, 1528 – 1539 (2016).

W. Skrypnik, Coulomb dynamics near equilibrium of two equal negative charges in the field of fixed two equal positive charges, Ukr. Math. J., 68, № 9, 1273 – 1285 (2016), https://doi.org/10.1007/s11253-017-1307-9

W. Skrypnik, Coulomb dynamics of three equal negative charges in field of fixed two equal positive charges, J. Geom. and Phys., 127, 101 – 111 (2018), https://doi.org/10.1016/j.geomphys.2018.02.006

A. Lyapunov, General problem of stability of motion, Moscow (1950); English translation: Internat. J. Control, 55, № 3, 521 – 790 (1992), https://doi.org/10.1080/00207179208934253

M. S. Berger, Nonlinearity and functional analysis, Lect. Nonlinear Problems in Math. Analysis, Acad. Press, New York etc. (1977).

J. Marsden, M. Mc. Cracken, The Hopf bifurcation and its applications, Springer-Verlag, New York (1976).

C. Siegel, J. Moser, Lectures on celestial mechanics, Springer-Verlag, Berlin etc. (1971).

V. Nemy`czkij, V. Stepanov, Качественная теория дифференциальных уравнений (Russian) [[Kachestvennaya teoriya differenczial`ny`kh uravnenij]], Moskva, Leningrad, (1947).

W. Skrypnik, Coulomb planar periodic motion of n equal charges n the field of n equal positive charges fixed at a line and constant magnetic field, Adv. Math. Phys., 2018, Article ID 2548074, (2018), 10 p.

https://doi.org/10.1155/2548074.

C. Siegel, Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösun. (German), ¨ Nachr. Akad. Wiss. Math. Phys. K1, IIa, 21 – 30 (1952).

W. Skrypnik, Mechanical systems with singular equilibrium and Coulomb dynamics of three charges, Ukr. Math. J., 70, № 4, 519 – 533 (2018).

G. A. Hagedorn, A time dependent Born – Oppenheimer approximation, Commun. Math. Phys., 77, 1 – 19 (1980).

Published
25.10.2020
How to Cite
SkrypnikW. I. “Periodic Coulomb Dynamics of Two Equal Negative Charges in the Field of Four Equal Positive Fixed Charges”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 10, Oct. 2020, pp. 1432 -42, doi:10.37863/umzh.v72i10.741.
Section
Research articles