@article{Taranets_2019, title={Finite speed of propagation for the thin-film equation in the spherical geometry}, volume={71}, url={http://umj.imath.kiev.ua/index.php/umj/article/view/1479}, abstractNote={UDC 517.953 <br>
We show that a double degenerate thin-film equation obtained in modeling of a flow of viscous coating on the spherical surface has a finite speed of propagation for nonnegative strong solutions and, hence, there exists an interface or a free boundary separating the regions, where the solution $u>0$ and $u=0.$ Using local entropy estimates, we also obtain the upper bound for the rate of the interface propagation.}, number={6}, journal={Ukrainsâ€™kyi Matematychnyi Zhurnal}, author={TaranetsR. M.}, year={2019}, month={Jun.}, pages={840-851} }