@article{Bakhtin_Vyhovs’ka_Denega_2018, title={Inequalities for inner radii of symmetric disjoint
domains}, volume={70}, url={http://umj.imath.kiev.ua/index.php/umj/article/view/1634}, abstractNote={We study the following problem: Let $a_0 = 0, | a_1| = ... = | a_n| = 1,\; a_k \in B_k {\subset C}$, where $B_0, ... ,B_n$ are disjoint domains, and $B_1, ... ,B_n$ are symmetric about the unit circle. It is necessary to find the exact upper bound for
$r^{\gamma} (B_0, 0) \prod^n_{k=1}
r(B_k, a_k)$, where $r(B_k, a_k)$ is the inner radius of Bk with respect to $a_k$.
For $\gamma = 1$ and $n \geq 2$, the problem was solved by L. V. Kovalev. We solve this problem for $\gamma \in (0, \gamma_n], \gamma_n = 0,38 n^2$,
and $n \geq 2$ under the additional assumption imposed on the angles between the neighboring line segments $[0, a_k]$.}, number={9}, journal={Ukrains’kyi Matematychnyi Zhurnal}, author={Bakhtin, A. K. and Vyhovs’ka, L.V. and Denega, I. V.}, year={2018}, month={Sep.}, pages={1282-1288} }