@article{Gordevskii_Gukalov_2017, title={Approximate solutions of the Boltzmann equation with infinitely many modes}, volume={69}, url={http://umj.imath.kiev.ua/index.php/umj/article/view/1698}, abstractNote={For the nonlinear kinetic Boltzmann equation in the case of a model of hard spheres, we construct an approximate solution in
the form of a series of Maxwellian distributions with coefficient functions of time and the space coordinate. We establish the
sufficient conditions for the coefficient functions and the values of hydrodynamic parameters appearing in the distribution
that enable us to make the analyzed deviation arbitrarily small.}, number={3}, journal={Ukrainsâ€™kyi Matematychnyi Zhurnal}, author={GordevskiiV. D. and GukalovA. A.}, year={2017}, month={Mar.}, pages={311-323} }