Differential invariants, hidden and conditional symmetry

  • I. A. Yehorchenko Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
Keywords: conditional symmetry, hidden symmetry, differential invariants

Abstract

UDC 517.958:512.86

We provide a review on the development of hidden symmetry concept in the field of partial differential equations including a series of results previously obtained by the author. We also adduce new examples of classes of equations having type II hidden symmetry, and explain the nature of known non-classical symmetry of some equations.
We suggest an algorithm for description of classes of equations having specified conditional or hidden symmetry and/or reducible to equations with smaller number of independent variables by using a specific ansatz. We consider reductions that exist due to Lie, conditional and type II hidden symmetry. We also discuss relations between the concepts of hidden and conditional symmetry. It is proved that the type II hidden symmetry, which is previously regarded to be a special type of non-Lie symmetry, arises from the non-trivial $Q$-conditional symmetry of reduced equations. This approach allows not only to find the hidden symmetry and new reductions of known equations, but also makes it possible to describe a general form of equations from the specified $Q$-conditional and type II hidden symmetry.
As an example, we describe the general classes of equations with hidden and conditional symmetry under rotations in the Lorentz and Euclid groups, for which the relevant hidden and conditional symmetry allows reduction to radial equations with a smaller number of independent variables.

References

S. Lie, Klassifikation und Integration von gewohnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von ¨Transformationen gestatten, III, Arch. Mat. Naturvidenskab, 8, № 4, 371 – 427 (1883), Reprinted in Lie’s Gessammelte Abhandlungen, 5, 362 – 427 (1924).

G. W. Bluman, J. D. Cole, The general similarity solution of the heat equation, J. Math. and Mech., 18, 1025 – 1042 (1969). DOI: https://doi.org/10.1512/iumj.1969.18.18074

P. J. Olver, P. Rosenau, The construction of special solutions to partial differential equations, Phys. Lett. A, 114, 107 – 112 (1986); https://doi.org/10.1016/0375-9601(86)90534-7 DOI: https://doi.org/10.1016/0375-9601(86)90534-7

W. I. Fushchych, I. M. Tsyfra, On a reduction and solutions of the nonlinear wave equations with broken symmetry, J. Phys. A, 20, L45 – L48 (1987); https://doi.org/10.1088/0305-4470/20/2/001 DOI: https://doi.org/10.1088/0305-4470/20/2/001

W. I. Fushchych, R. Z. Zhdanov, Symmetry and exact solutions of nonlinear spinor equations, Phys. Rep., 172, 123 – 174 (1989); https://doi.org/10.1016/0370-1573(89)90090-2 DOI: https://doi.org/10.1016/0370-1573(89)90090-2

P. Clarkson, M. D. Kruskal, New similarity reductions of the Boussinesq equation, J. Math. Phys., 30, 2201 – 2213 (1989); https://doi.org/10.1063/1.528613 DOI: https://doi.org/10.1063/1.528613

D. Levi, P. Winternitz, Non-classical symmetry reduction: example of the Boussinesq equation, J. Phys. A, 22, 2915 – 2924 (1989); https://doi.org/10.1088/0305-4470/22/15/010 DOI: https://doi.org/10.1088/0305-4470/22/15/010

W. I. Fushchych, W. M. Shtelen, N. I. Serov, Symmetry analysis and exact solutions of nonlinear equations of mathematical physics [in Russian], Naukova Dumka, Kyiv (1989).

B. Abraham-Shrauner, A. Guo, Hidden symmetries associated with the projective group of nonlinear first-order ordinary differential equations, J. Phys. A, 25, № 21, 5597 – 5608 (1992); https://doi.org/10.1088/0305-4470/25/21/018 DOI: https://doi.org/10.1088/0305-4470/25/21/018

B. Abraham-Shrauner, Hidden symmetries and nonlocal group generators for ordinary differential equations, IMA J. Appl. Math., 56, 235 – 252 (1996); https://doi.org/10.1093/imamat/56.3.235 DOI: https://doi.org/10.1093/imamat/56.3.235

I. A. Yehorchenko, Group classification with respect to hidden symmetry, Proc. Fifth Int. Conf. “Symmetry in Nonlinear Mathematical Physics” (23 – 29 June, 2003, Kyiv), Proc. Inst. Mat. NAS Ukraine, 50, Pt 1, 290 – 297 (2004).

P. Basarab-Horwath, L. F. Barannyk, W. I. Fushchych, New solutions of the wave equation by reduction to the heat equation, J. Phys. A, 28, № 18, 5291 – 5304 (1995); https://doi.org/10.1088/0305-4470/28/18/018 DOI: https://doi.org/10.1088/0305-4470/28/18/018

B. Abraham-Shrauner, Type II hidden symmetries of some partial differential equations, 1005th AMS Meeting, Newark, Delaware, 22 – 37 (2005).

M. L. Gandarias, Type-II hidden symmetries through weak symmetries for nonlinear partial differential equations, J. Math. Anal. and Appl., 348, 752 – 759 (2008); https://doi.org/10.1016/j.jmaa.2008.07.067 DOI: https://doi.org/10.1016/j.jmaa.2008.07.067

L. V. Ovsyannikov, Program SUBMODELS. Gas dynamics, J. Appl. Math. and Mech., 58, № 4, 30 – 55 (1994); https://doi.org/10.1016/0021-8928(94)90137-6 DOI: https://doi.org/10.1016/0021-8928(94)90137-6

L. V. Ovsyannikov, Group analysis of differential equations, Acad. Press, New York (1982).

P. J. Olver, Application of Lie groups to differential equations, Springer-Verlag, New York (1987). DOI: https://doi.org/10.1007/978-1-4684-0274-2

I. A. Yehorchenko, Differential invariants and hidden symmetry; ArXiv preprint arXiv:1010.5313 (2010).

N. I. Bujela, An overview of hidden symmetries, Doct. diss., Univ. Kwazulu-Natal, South Africa (2012).

R. Z. Zhdanov, I. M. Tsyfra, R. O. Popovych, A precise definition of reduction of partial differential equations, J. Math. Anal. and Appl., 238, № 1, 101 – 123 (1999); https://doi.org/10.1006/jmaa.1999.6511 DOI: https://doi.org/10.1006/jmaa.1999.6511

R. O. Popovych, N. M. Ivanova, New results on group classification of nonlinear diffusion-convection equations, J. Phys. A, 37, 7547 – 7565 (2004); https://doi.org/10.1088/0305-4470/37/30/011 DOI: https://doi.org/10.1088/0305-4470/37/30/011

I. A. Yehorchenko, Differential invariants and construction of conditionally invariant equations, Symmetry in Nonlinear Mathematical Physics, Proc. Fourth Int. Conf. “Symmetry in Nonlinear Mathematical Physics” (9 – 15 July, 2001, Kyiv), Proc. Inst. Math. NAS Ukraine, 43, Pt 1, 256 – 262 (2002).

S. Lie, Uber die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung ¨ , Arch. Math., 6, № 3, 328 – 368 (1881) (Transl. by N. H. Ibragimov: S. Lie, On integration of a class of linear partial differential equations by means of definite integrals, CRC Handbook of Lie Group Analysis of Differential Equations, 2, 473 – 508 (1994)).

B. Abraham-Shrauner, K. S. Govinder, On the origins of symmetries of partial differential equations:

the example of the Korteweg – de Vries equation, J. Nonlinear Math. Phys., 15, Suppl. 1, 60 – 68 (2008); https://doi.org/10.2991/jnmp.2008.15.s1.5 DOI: https://doi.org/10.2991/jnmp.2008.15.s1.5

I. A. Yehorchenko, A. I. Vorobyova, Sets of conditional symmetry operators and exact solutions for wave and generalised heat equations, Proc. Fifth Int. Conf. “Symmetry in Nonlinear Mathematical Physics” (23 – 29 June, 2003, Kyiv), Proc. Inst. Math. NAS Ukraine, 50, Pt 1, 298 – 303 (2004).

I. G. Lisle, Equivalence transformations for classes of differential equations, Thesis, Univ. British Columbia (1992); http://www.ise.canberra.edu.au/mathstat/StaffPages/LisleDissertation.pdf

I. G. Lisle, G. J. Reid, Symmetry classification using noncommutative invariant differential operators, Found. Comput. Math., 6, 353 – 386 (2006); https://doi.org/10.1007/s10208-005-0186-x DOI: https://doi.org/10.1007/s10208-005-0186-x

B. Abraham-Shrauner, K. S. Govinder, Master partial differential equations for a type II hidden symmetry, J. Math. Anal. and Appl., 343, № 1, 525 – 530 (2008); https://doi.org/10.1016/j.jmaa.2008.01.074 DOI: https://doi.org/10.1016/j.jmaa.2008.01.074

V. I. Lahno, R. Z. Zhdanov, O. V. Magda, Group classification and exact solutions of nonlinear wave equations, Acta Appl. Math., 251, 253 – 313 (2006); https://doi.org/10.1007/s10440-006-9039-0 DOI: https://doi.org/10.1007/s10440-006-9039-0

I. A. Yehorchenko, Conditional symmetry and reductions for the two-dimensional nonlinear wave equation, I. General case; arXiv:1010.4913 (2010).

B. Abraham-Shrauner, K. S. Govinder, D. J. Arrigo, Type-II hidden symmetries of the linear 2D and 3D wave equations, J. Phys. A, 39, 5739—5747 (2006); https://doi.org/10.1088/0305-4470/39/20/008 DOI: https://doi.org/10.1088/0305-4470/39/20/008

W. I. Fushchych, I. A. Yehorchenko, Second-order differential invariants of the rotation group $O(n)$ and of its extension $E(n), P(l, n)$, Acta Appl. Math., 28, 69 – 92 (1992);

Y. Y. Lazur, V. M. Dobosh, V. V. Rubish, S. Chalupka, M. Salak, Hidden symmetry and separation of variables in the two-centre problem with a confinement-type potential, Acta Phys. Slovaca, 52, № 2, 41 – 54 (2002).

J. F. Giron, S. D. Ramsey, B. A. Temple, Conditions for translation and scaling invariance of the neutron diffusion equation, Progr. Nucl. Energy, 110, 333 – 340 (2019); https://doi.org/10.1016/j.pnucene.2018.10.005 DOI: https://doi.org/10.1016/j.pnucene.2018.10.005

I. M. Tsyfra, T. Czyzycki, ˙ Symmetry and solution of neutron transport equations in nonhomogeneous media, Abstr. and Appl. Anal., 2014, Article ID 724238 (2014), 9 p.; https://doi.org/10.1155/2014/724238 DOI: https://doi.org/10.1155/2014/724238

W. I. Fushchych, Z. I. Symenoh, I. M. Tsyfra, Symmetry of the Schrodinger equation with variable potential, J. Nonlinear Math. Phys., 5, 13 – 22 (1998); https://doi.org/10.2991/jnmp.1998.5.1.3 DOI: https://doi.org/10.2991/jnmp.1998.5.1.3

A. Paliathanasis, M. Tsamparlis, The reduction of the Laplace equation in certain Riemannian spaces and the resulting Type II hidden symmetries, J. Geom. Phys., 76, 107 – 123 (2014); https://doi.org/10.1016/j.geomphys.2013.10.016 DOI: https://doi.org/10.1016/j.geomphys.2013.10.016

M. Tsamparlis, A. Paliathanasis, Type II hidden symmetries for the homogeneous heat equation in some general classes of Riemannian spaces, J. Geom. Phys., 73, 209 – 221 (2013); https://doi.org/10.1016/j.geomphys.2013.06.008 DOI: https://doi.org/10.1016/j.geomphys.2013.06.008

G. Cicogna, Symmetry classification of quasi-linear PDE’s containing arbitrary functions, Nonlinear Dynam., 51, 309 – 316 (2008); https://doi.org/10.1007/s11071-007-9212-7 DOI: https://doi.org/10.1007/s11071-007-9212-7

G. Cicogna, F. Ceccherini, F. Pegoraro, Applications of symmetry methods to the theory of plasma physics, SIGMA, 2, Paper 017 (2006), 17 p.; https://doi.org/10.3842/SIGMA.2006.017 DOI: https://doi.org/10.3842/SIGMA.2006.017

Published
18.08.2021
How to Cite
Yehorchenko, I. A. “Differential Invariants, Hidden and Conditional Symmetry”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 8, Aug. 2021, pp. 1023 -3, doi:10.37863/umzh.v73i8.6377.
Section
Research articles