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PAIYCH 3IPHACTOCTI TA OIIYKJIOCTI
MOXITHUX ®YHKIIIT BECCEJIS

In this paper, our aim is to find the radii of starlikeness and convexity of Bessel function derivatives for three different
kind of normalization. The key tools in the proof of our main results are the Mittag-Leffler expansion for nth derivative
of Bessel function and properties of real zeros of it. In addition, by using the Euler —Rayleigh inequalities we obtain some
tight lower and upper bounds for the radii of starlikeness and convexity of order zero for the normalized nth derivative of
Bessel function. The main results of the paper are natural extensions of some known results on classical Bessel functions
of the first kind.

3HaiiieHo paiycH 3ip9acToCTi Ta OIMyKIOCTI MOoXinHuX (yHKII1 beccemns At Tppox pi3HUX BUAIB HOpMaizauii. KirowoBumu
IHCTpyMEHTaMH JIOBEJICHHS OCHOBHHUX pe3ysbrariB € poskian Mirrar-Jleddnepa s n-i noxignoi ¢ynxuii beccens ta
BIIACTHBOCTI Horo filicHuX HymniB. Kpim Toro, 3a momomororo HepiBHOCTe# Eiinepa—Penest oTpumaHo neski TOYHI HUKHI 1
BEPXHI MEXIi IJIs pajiyciB 3ipyacTocTi Ta OMyKJIOCTI HYJIbOBOTO HOPSIKY [UIsi HOpMOBaHOI m-i moxinHoi ¢yHkuii beccens.
OCHOBHHMH pe3yJbTaTaMd POOOTH € MPHUPOAHI PO3LIMPEHHS AESKUX BiJOMHUX PE3yNbTaTiB INOIO0 KIACHYHHX (YHKIIH
beccens nepmoro poxy.

1. Introduction. Denote by D, = {z € C: |z| <r} (r > 0) the disk of radius r and let D =
= ;. Let A be the class of analytic functions f in the open unit disk D which satisfy the usual
normalization conditions f(0) = f/(0) — 1 = 0. Traditionally, the subclass of A consisting of
univalent functions is denoted by S. We say that the function f € A is starlike in the disk D, if f
is univalent in D,, and f(D,) is a starlike domain in C with respect to the origin. Analytically, the

!/
function f is starlike in I, if and only if Re(zjf((j)) >0, z € D,. For 5 € [0,1) we say that the
z
/
function f is starlike of order 5 in I, if and only if Re(z}f ((§)> > 3, z € D,.. We define by the
z

real number

2f'(2)
f(z)

the radius of starlikeness of order 5 of the function f. Note that 7*(f) = r{(f) is the largest radius
such that the image region f (DT;( ) is a starlike domain with respect to the origin.

TE(f):SUP{TE(U,Tf):Re< ) > [ for all zG}D)T}

The function f € A is convex in the disk D, if f is univalent in D,, and f(D,) is a convex

domain in C. Analytically, the function f is convex in D), if and only if Re<1 + Zj:;i?) > 0,

z € D,. For § € [0,1) we say that the function f is convex of order 8 in D, if and only if

Re<1 L)

f'(z)

* This research was supported by Kafkas University Scientific Research Projects Coordination Unit (Project Number
2018-FEF-15).

> > [, z € D,.. The radius of convexity of order [ of the function f is defined by
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the real number

2f"(2)
f'(z)
Note that r¢(f) = r§(f) is the largest radius such that the image region f (Drg( f)) 1s a convex

domain.
The first kind of Bessel function of order v is defined by [18, p. 217]

r5(f) zsup{re (0,7¢) Re<1+ ) > 3 forall z EDT}.

—1)m 2m—+4v
(=1) f) , zeC.

Tulz) = mZ:O mlI'(m+v+1) (2

Now, we consider the nth derivative of Bessel function of the first kind by

o0

(n) — (_1)mr(2m +v+ 1) z 2m—n+v
BN = 2 e @m nt v O+ o ) (3) :

m=0

z € C.

Here, it is important mentioning that for n = 0 the Jﬁ”) reduce to classical Bessel function .J,,. Since
the function J,S") is not belongs to A, firstly, we form and focus on the following normalized forms:

1

funl2) = [2T( = n+ 1) I ()] 7,

gun(2) =2"T(v —n+ 1)zl+”_”J£”)(z), (L.1)

n—v

hyn(z) = 2T (v —n + 1) JM(V2),

where v > n — 1.

The first studies on geometric properties of Bessel functions of first kind was conducted in 1960
by Brown, Kreyszig and Todd [10, 16]. They determined the radius of starlikeness of the functions
fro0(2) and g, 0(2) for the case v > 0. Recently, in 2014, Baricz et al. [3] and Baricz and Szasz [4]
obtained, respectively, the radius of starlikeness of order 5 and the radius of convexity of order 5
for the functions f,,0(2), gv0(2) and h, o(z) in the case when v > —1. On the other hand, we know
that if v € (—2, —1), then the Bessel function has exactly two purely imaginary conjugate complex
zeros, and all the other zeros are real [21, p. 483]. In 2015, Szasz [20] investigated the radius of
starlikeness of order (3 for the functions g, (z) and h,(z) in the case when v € (-2, —1) by using
some inequalities. In the same year, Baricz and Szasz [5] obtained the radius of convexity of order
B for the functions g, (z) and h,(z) in the case when v € (-2, —1). Later, in 2016, Baricz et al. [7]
determined the radius of a-convexity of the same three functions for v > —1. After a year, Caglar
et al. [11] extended it for the case when v € (—2,—1). In 2017, Deniz and Szasz [12] determined
the radius of uniform convexity of f,0(2), g,0(2) and h,o(z) for v > —1. They also determined
necessary and sufficient conditions on the parameters of these three normalized functions such that
they are uniformly convex in the unit disk. Moreover, in [1, 2] authors determined tight lower and
upper bounds for the radii of starlikeness and convexity of the functions g,,0(z) and h,,o(z). The key
tools in their proofs were some new Mittag-Leffler expansions for quotients of Bessel functions of
the first kind, special properties of the zeros of Bessel functions of the first kind and their derivatives,
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Euler—Rayleigh inequalities and the fact that the smallest positive zeros of some Dini functions are
less than the first positive zero of the Bessel function of first kind.

Another study on Bessel functions investigate the properties of derivatives and the zeros of
these derivatives. In the last three decades the zeros of the nth derivative of Bessel functions of
the first kind for n € {1,2,3} have been also studied by researchers like Elbert, Ifantis, Ismail,
Kokologiannaki, Laforgia, Landau, Lorch, Mercer, Muldoon, Petropoulou, Siafarikas and Szego; for
more details see the papers [13, 15] and the references therein. Very recently in 2018, Baricz et al. [§]
obtained some results for the zeros of the nth derivative of Bessel functions of the first kind for all
n € N by using the Laguerre — Pdlya class of entire functions and the so-called Laguerre inequalities.

Motivated by the above results in this paper, we deal with the radii of starlikeness and convexity
of order /3 for the functions f,,,(2), gvn(z) and h,,(2) in the case when v > n — 1 for n € N.
Also, we determined tight lower and upper bounds for the radii of starlikeness and convexity of these
functions.

2. Preliminaries. In order to prove the main results we need the following preliminary results.

Lemma 2.1 [8]. The following assertions are valid:

(@ Ifv >n—1, then z — Jin) (2) has infinitely many zeros, which are all real and simple,
expect the origin.

(b) If v > n, then the positive zeros of the nth and (n + 1)th derivative of J,, are interlacing.

(¢) If v>n—1, then all zeros of z — (n—v) Jyn)(z) + leEnH)(z) are real and interlace with
the zeros of z — Jﬁn)(z).

The lemma below (see [9, 19]) is also required for our work.

Lemma 2.2. Let f(x) = ZOO anz", an € R, and g(x) = ZOO bpx™, by, > 0, for all

n=0 n=0
n > 0, converge on an interval (—r,r) for some r > 0. If the sequence {ay /by }n>0 is decreasing
(increasing), then the function x — f(x),/ g(z) is decreasing (increasing) too on (0,_r). So the same
result holds for the following:

f(z) = Z anz>" and  g(x) = Z ",
n=0 n=0

2.1. Zeros of hyperbolic polynomials and the Laguerre— Polya class of entire functions. In
this subsection, some necessary knowledge about polynomials and entire functions with real zeros
are given. An algebraic polynomial is named hyperbolic if its all zeros are real. We will be using the
following lemma given in [6] and obtain new results.

Lemma 2.3. Assume

p(x)=1—aiz+az? —azz® + ...+ (=) "apz" = (1 —z/z1) ... (1 — /)

is a hyperbolic polynomial with positive zeros 0 < x1 < x9 < ... < xy, and it is normalized by
p(0) = 1. Then the polynomial q(x) = Cp(x) — xp'(x) is hyperbolic for any constant C. Also, the
smallest zero n is in (0, 1) if and only if C < 0.

Clearly, a real entire function ¢ is in the Laguerre — Polya class £P if it is in the form

P(x) = cxMe—ax?+hz H <1 + ;17) e_ij

xr
k>1 k
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with ¢, 5,2, € R, a >0, m € NU {0} and Zx,f < oo. Similarly, we say ¢ is of type Z in the
Laguerre — Polya class, denoted by ¢ € LPZ, if ¢(x) or ¢p(—x) is written as

o(xz) = cx™e’” <1 + :r:>7
() kl;[l o
with c € R, 0 > 0, m € NU {0}, zx > 0 and Zx;l < o0o. The complement of the space of
hyperbolic polynomials in the topology induced by the uniform convergence on the compact sets of
the complex plane is the class LP if the complement of the hyperbolic polynomials whose zeros
possess a preassigned constant sign is LPZ. For any entire function ¢ in the form

ok
p(z) = ZM!CH’

k>0
its Jensen polynomials are given by

™o (m
Pp(p;@) = P(z) = ) ( )ka.
=0 \F
The following lemma is a well-known characterization of functions in the class LP (see [14]).
Lemma 2.4. ¢ is in the class LP (LPZL, respectively) if and only if all the polynomials
Py(p;x), m = 1,2,..., are hyperbolic such that they are hyperbolic with zeros of equal sign.
Also, the sequence P, (y;z,/n) is locally uniformly convergent to ¢(z).
The following lemma is necessary for the proof of main results.
Lemma 2.5. Let v > n — 1 and a < 0. Then the functions z — (2a — n + V)Jyn)(z) -
- zJ,SnH)(z) are written in the form
2" 1T (y + 1 — n) ((2a )M (z) - zJ§n+1>(z)) - (g)*" Win(2),
where W, ,, is entire functions belonging to the Laguerre—Pdlya class LP. Moreover, the smallest

positive zero of W, ,, cannot exceed the first positive zero jinl), where jl(,nn)1 is the mth positive zero

ofjén)(z), m € N, n € Ny.

Proof. 1t is obvious from the infinite product representation of z — j,,n)(z) =2T(v+1-
—n)(z)"*”Jl(,n) (z) that this function is in the class £P. This shows that the function z — J ) (2) =
= j,,n)(Qﬁ ) is in the class LPZ. Then, due to Lemma 2.4, its Jensen polynomials

m o /m
Pm(,]]l(,n),g) — Z <k>ﬂkxk

k=0

are all hyperbolic. However, it can be seen that the Jensen polynomials of Wyn(z) = Wyn(2v2)
are clearly .
Pr(Womss) = aPr (J56) — <P, (I575<).

Moreover, Lemma 2.3 tells us that all zeros of P, (Wy,n; S ) are real and positive and that the smallest

one precedes the first zero of P, (Jl(,n); g). From Lemma 2.4, the latter result immediately implies

that Wy,n € LPT and that its first zero precedes j£ 1). Finally, the first part of the statement of the
2

lemma follows after we go back from /V[Z,’n to W, by setting ¢ = ZZ

n
)

Lemma 2.5 is proved.
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2.2. Euler— Rayleigh sums for positive zeros of J,S")(z). Baricz et al. [8] proved the Weier-
strassian decomposition of Jﬁ”)(z) as follows:

v—n 2
QP R — —— : 2.1
7 (2) 2T'(v+1—n) gl <]£an21)2 2.1)

where j{"), is the mth positive zero of J.™ (), m € N, n € Ny. Therefore we can write

2

Gon(2) = 2T(v —n+ 1)) =2 [] [1- % . (2.2)
m>1 (]u?m)

On the other hand, the series representation of g,, (%)

Gon() = Z m(—l)mr(Qm +rv+1)I'(v—n+1) 2ml 23)

= MmT'2m —n+v+1)I'(m+rv+1)

Now, we would like to mention that by using the equations (2.2) and (2.3) we can obtain the
following Euler —Rayleigh sums for the positive zeros of the function g, ,. From the equality (2.3)
we have

(2) G i
wn(2) =2 — z
I, Av—mn+2)(r—m+1)
4
Rv-—n+49)v—-—n+3)(v—n+2)(r—n+1)
Now, if we consider (2.2), then some calculations yield that
2
1 1 1 1
gl/,n(z):Z—szg‘f‘* ZT —ZT 25—.... (25)

2 2 4
m>1 (]V7m> m>1 <]lx,m> m>1 (Ju,m)

By equating the first few coefficients with the same degrees in equations (2.4) and (2.5), we get

1 v+2
- (2.6)
mZZl (]5"%)2 4v—n+2)(r—n+1)

and

1 1
ngl (]5”%)4 - 16(1/—n—i—2)(y—n—{—1)><

><< (v +2)* (v+4)(v+3) )

v—n+2)v—m+1) w—-—n+4)(rv—n+3) 2.7

Here, it is important mentioning that for n = 0 the equations (2.6) and (2.7) reduce to
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1 1 1 1
= and = ,
m>1 (vam)Q 4(V + 1) n% (ju,m)4 16(V + 2)(1/ + 1)2

respectively, where j, ,,, denotes the mth zero of classical Bessel function J,.
Another special case for n = 1, 2 the equations (2.6) and (2.7) reduce to

Z 1 v +2 Z 1 B 2 +8v+38
S Gm)” D S (g, 1620+ 1R+ 2)
and
}2 1 v+2 §: 1 1302 + 1902 4+ 2610 + 8

St A= ()t 16 = DR )+ 2)]

where j;, ., and j,,, denotes the mth zeros of function J;, and .J;/, respectively.

3. Main results. 3.1. Radii of starlikeness and convexity of the functions f, ., gun and
hy n. The first principal result we established concerns the radii of starlikeness and reads as follows.
Here and in the sequel [, denotes the modified Bessel function of the first kind and order v. Note
that I, (z) = i7" J,(iz).

Theorem 3.1. The followings hold.:

(@ Ifv>nand B €0,1), then r5(fun) = a:,(fl), where x,(fl) is the smallest positive root of the
equation

—ggikﬂf—ﬁza
(v —n) IS (r)

(n) (n)

Besides, if n —1 <v <n and 8 € [0,1), then we have r3(fyn) = x, 5, where x, 5 is the smallest

positive root of the equation
I (r)

— L - B=0.
(v —n) 1" ()

(b) If v >n—1and B €10,1), then s (Gum) = yl(fl), where yl(fl) is the smallest positive root
of the equation
TJlEn-‘rl) ('I”)

D +n+1l—-v—-p=0.
Ju ()

(©) Ifv>n—1and B €10,1), then r5(hyn) = z,gtll), where zl(:ll) is the smallest positive root
of the equation
Vil ()
1)

Proof. Firstly, we prove part (a) for v > n and parts (b) and (c) for v > n — 1. We need to
show that the following inequalities:

Zfzc,n(z) Zgl',’n(z) Zh:,m(z)
Re< o) ) > 3, Re( o) ) >3 and Re<hm(z)> > f (3.1

are valid for z € Dr;( fom)s % € Dr;(gu,n) and z € Dr;(hu,n)v respectively, and each inequality above
cannot holds in larger disks.

+n+2—-v-28=0.
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When we write the equation (2.1) in definition of the functions f,,,,(2), gv.n(2) and h, ,(2), we
get by using logarithmic derivation

fhaz) 1 28V 1 9,2
) — 1 Z

= — - 9 v > n?
fu,n(z) v—n ngn)(z) von m>1 <junm>2 -
24 (2) 21" (2) 27
4+—f:n+1—u+4—@f—f=1—}:“‘Tf‘ﬂ v>n-—l,
gun(?) () w31 (jm) -2
% _ (n+1)
Zhl/,n(z)zl_i_nzy_i_;\/g‘](yn) (\/E): _Z%, v>n-—1.
vn(2) (V) mzt (jn) — =
It is known [4] that if z € C and X\ € R are such that A\ > |z|, then
2] z
>R , 3.2
(5 (3.2)
Then the inequality
2 2
R
(]u,nm) - |Z|2 (]Mnm) - 22

holds for every v > n — 1. Therefore,

/ 2
SEC) N
Jun(2) SRSt (j%) — 22

1 3 212> [2lfiallzD)

>1— - ,
=G IE

Zgll/,n(z) 22’2
Re( >:1_Z Rl TN,
gun(2) "= (Jz(/n%> — 22
> 2|2 _ 1zlguallz)

5 =

>1-

I

zh, ,(2) z
Re( =~ =1-S Re| — 2 —
e< ”Vv”(”) 1 mzz:l e (360"~ =

S S C R, )

m>1 (]ZE”TZL)Z _yp hun(|2])
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where equalities are obtained only if z = |z| = r. From the latest inequalities and the minimum
principle for harmonic functions, we conclude that the corresponding inequalities in (3.1) hold if and
only if |2| < x(ynl), 2| < yl(fl) and |2] < zi’fl), respectively, where a:(ynl), ySfl) and zinl) is the smallest

positive roots of the equations

) ) L i)
fu,n(r) gl/,n(r) hu,n(r)
which are equivalent to
(n+1) (n+1)
Jy Jl/
r—(g)—B:O, r(ni)(r)ﬁ‘n%‘l—l/—ﬁz
(v —n)J " (r) Ju(r)
and (D)
M+n+2—u—2520.
I (V)
—1)(v— -1
The result follows from Lemma 2.5 by taking instead of a the values (B ) n)7 g and

B — 1, respectively. In other words, Lemma 2.5 show that all the zeros of the above three functions

are real and their first positive zeros do not exceed the first positive zeros jl(fl) and m . This
guarantees that the above inequalities hold. This completes the proof of part (a) if v > n and
parts (b) and (¢) if v > n — 1.

Now, to prove the statement for part (a) when v € (n — 1,n), we use the counterpart of (3.2),

that is,
z —|2|
> 3.3
Re()\—z>_)\—|—|z|’ (3-3)

which holds for all z € C and A € R are such that A > |z| (see [3]). If in the inequality (3.3), we
2
replace z by 22 and \ by <]£n%) , it follows that

22 —|Z|2

() =)~ (550) +1=p
n)

provided that |z| < jl(, - Thus, for n — 1 < v < n, we obtain

Re

A\

L 1 222
Re(zf, (Z)>:1_ ZRe %
Fa ) T 2 Gy
L el ilelfllile)
_ 2 - ;

In this case equality is obtained when z = i|z| = ir. Also, the latter inequality tells us that

() >
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if and only if |z| < xf}ng , Where xf}ng denotes the smallest positive root of the equations

irf o (ir)

fonlir) P

which is equivalent to
z'TJlSnH) (ir)
(v —n)JS" (ir)

rI D (r)

v

—5=0 or _—
(v —n) IS (r)

—B=0

for n — 1 < v < n. It follows from Lemma 2.5 that the first positive zero of z — irJ£n+1)(ir) -

—B(v— n)J,En) (ir) cannot exceed jl(ﬁ) so the above inequalities are verified. So we would only need

to prove that the above function has actually only one zero in (0, 00). Note that, due to Lemma 2.2,

the function
irJ£n+1)(ir) @

Iy Q2
where
e (2m —n+v)T'(2m +v + 1) om
Ql_g%mu%wwmm—n+u+mmm+u+m ’
w r@2m+v+1) 9m
@2 _mZ_Om!22m+l’F(2m—n—|—1/—|—l)F(m+1/—|—1)T ’

is increasing on (0,00) as a quotient of two power series whose positive coefficients form the
increasing “quotient sequence” {2m — n + v}p,,>0. On the other hand, the above function tends to
v —n when 7 — 0, so that its graph can intersect the horizontal line y = (v — n) > v — n only
once. Thus, proof for part (a) of the theorem is completed if v € (n — 1,n).

Theorem 3.1 is proved.

With regards to Theorem 3.1, we tabulate the radius of starlikeness for f,,, g, and h,,
for a fixed v = 2.5, n = 0,1,2,3 and, respectively, 5 = 0 and g = 0.5. These are given in
Table 3.1. Also, in Table 3.1, we see that radius of starlikeness is decreasing according to the order
of derivative and the order of starlikeness. On the other words, from all these results we concluded
that r5(fo,0) > r5(fo1) > r5(fo2) > ... > r5(fon) > ... for B €[0,1) and v > n — 1, n € Ny.
In addition to, we can write Tfil(fwn) < rgo(fy,n) for0<fy<pi<landv >n—1,n € Ny.
Same inequalities is also true for 75(gu,,) and 75(hy, ).

For n = 0 in the Theorem 3.1 we obtain the results of Baricz et al. [3]. Our results is a common
generalization of these results.

Table 3.1
" r5(f25m) r5(92.5,n) r5(h2.5.n)
B=0 |8=05|8=0]8=05| =0 | B=05
0| 3.6328 | 2.7569 | 2.5011 | 1.8192 | 11.1696 | 6.2556
1] 2.1056 | 1.5926 | 1.7975 | 1.3307 | 5.4265 | 3.2312
2 1 0.8512 | 0.6229 | 1.1285 | 0.8512 | 2.0284 | 1.2735
3 | 0.4586 | 0.3051 | 0.4819 | 0.3703 | 0.3543 | 0.2323
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The second principal result we established concerns the radii of convexity and reads as follows.
Theorem 3.2. The following statements hold.:
(@ Ifv>nand B €0,1), then the radius r5(f,,5) is the smallest positive root of the equation

(n+2) (n+1)
Jn V) ven L)

MOI"EOVQ”, Tg(fzx,n) < ‘71(/111_‘—1) < jl(’fbl)

() If v >n—1and g € [0,1), then the radius T;(gy,n) is the smallest positive root of the
equation
(n—v+ z)r,](’””( ) + 252 ()
(n— v+ 1) I () + IS ()
(©) If v>n—1and B € [0,1), then the radius r§(hyy) is the smallest positive root of the
equation

=0.

n+l—v—p+

nt2-v=28  Jr(n—v 3K )+ V)
’ 2 (n—v+ 21 (V) + ()
Proof. (a) Since

=0.

1 (n+2) (n+1)
1+ Zf;u,n(z) — 14 zJy - (Z) + ( 1 . 1) zJp (Z)
u,n(z) J£n+ )(Z) v—m J]/n) (Z)
and by means of (2.1) we have
(n+1) 2
zJy (2) 2z
(n) =v-n-= Z (n) 2 )
v (2) m>1 (jy,m> — 22

it follows that

Sl (1 2 - 2
A P G DY e O

Now, suppose that v € (n,n + 1]. If we use the inequality (3.2), for all z € ]Dj(n) we get the
v,1

inequality

_mZ;lRe (jl,"ﬁl))Q - >
1
Zl‘<v—n‘1>n§(js%) _T;»(]yw)
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where |z| = r. Also, observe that if we use the inequality [4] (Lemma 2.1)

. . N
_Z )= > _
“m{a—z> R*@—z>—“a—u| b [

where @ > b > 0, p € [0,1] and z € C such that |z| < b, then we get that the above inequality is

also valid when v > n + 1. Here we used that the zeros of the nth and (n + 1)th derivative of J,
(”))

v,1

are interlacing according to Lemma 2.1. The above inequality implies for r € (0, j

A S O S0
= e N P 1 S N (S

On the other hand, we define the function ¢, ,, : (n, jiﬁ)) — R,

" fun(r)
Yun(r) =1+ ’ .
= )
Since the zeros of the nth and (n + 1)th derivative of J, are interlacing according to Lemma 2.1

and r < jl(:frl) < jl(,fll) <or r< j,(jfll)jl(ﬁﬂ)) for all v > n, we have

(Jﬁ%) ((j,ﬂ?nfl))Q _ r2> _ (jl(/%n) <<jl(/n%>2 _ T2> <0.

Thus, the inequality

d(pl,,n(r) 1 4r (]Vflm)Z 4r (]z(:lﬁtl)>2
dr :_(V—n_l) = (.2 2 (1)) 2 2 <
() =) (i) - )
4r (qu,lm)? 4r (jl(,flril))z

() g () =)
)" (057 =) - ()" ()" )’
m>1 () \ 2 ) 2 (2 ) 3

> ()" =) (ot =)

is satisfied. Consequently, the function ¢,, ,, is strictly decreasing. Observe also that lim,\ g . n(7) =
=1>f and lim_ ntm ¢u.n(r) = —oo, which means that for z € D, we have
v,1

2F(2)
R%L+Lﬂd>>ﬁ

if and only if r; is the unique root of
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L)
fom(r) 7
situated in (0, ]l(,nl))
(b) Observe that
2Gy n(2) (n—v+ 2)2J£n+1)(z) + zQJ,EnJrQ)(z)
1+ — =n—-v+1)+ o) =)
9in(2) (n—v+ 1) (2)+ 200" ()

By using (1.1) and (2.1), we have

g,’,’n(z) =2"Tv—n+1)"""|(n—v+ l)Jén)(z) + leE”“)(z)] =

B f: m2em+1DI'Cm+rv+ 1)y —n+1) (3)2"1 (3.4)
B = m'F2m—n+u+1)F(m+1/+1) 2 ’
and
mlogm 1
lim ——— = —|
m—oo \N(m,n,v) 2
where

A(m,n,v) =[2mlog2 +logl'(m+ 1) +logT'(2m —n+v+1)+logT'(m+v+1) —
—logI'2m +v+1) —logl'(v —n + 1) —log(2m + 1)].

logT'(am + b)

mlogm
constants. So, by applying Hadamard’s theorem [17, p. 26], we can write the infinite product repre-

sentation of g, ,,(2) as follows:

Here, we used m! = I'(m + 1) and lim,, = a, where a and b are positive

2

’ _ _ z
gu,n(z) - 71;[1 1 (fyz(ln%)2 ’ (3.5)

where 75",?1 denotes the mth positive zero of the function g’yvn. From Lemma 2.5 for v > n — 1 the
function g,,,, € LP, and the smallest positive zero of g, ,, does not exceed the first positive zero
of J.

By means of (3.5) we have

z//
1+ -%V,n( — _Z

gu,n( ) m>1 (’Yum) — 2

If we use the inequality (3.2), for all z € Dv(m , we get the inequality

Re (1+ Iynl2) ) —Z

l/?’L(

SRy
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(n)

where |z| = r. Thus, for r € (0,7, 1), we have
zq" (2 rqg’ (r
u {ro(1+ Zal)) ol
2€Dy gu,n(’z) gu,n(r)
The function G, : (O,fylstll)) — R, defined by
1!
9y (T)
Gyn(r) =1+ —= ,
wnl 0nr)
is strictly decreasing and lim,~ o G, (r) = 1 > § and 1imr ) Gy (1) = —oo. Herewith, in view
v,1

of the minimum principle for harmonic functions for z € D,,, we get that

Re(l N zgy,n(Z)) oy
9 (2)

if and only if ry is the unique root of

situated in (0, 'ysl) ).

(c) Observe that

iy (2) 2 2 (n—v+2I" (V) + VTR

By using (1.1) and (2.1), we have

Hyn(2) = 21T = n+ )25 [0 = v+ I3 + VEIEI(E)] =

2 (—1)™m+DICm+ v+ D)y —n+1) fz2\m
-3 ()

3.6
= mI'Cm—-—n+v+1)I'(m+rv+1) 4 (36)
and
. mlogm 1
lim ——— = —,
m—oo T(m,n,v) 2
where

T(m,n,v) = [2mlog2 +logl'(m+ 1) +logT'2m —n+v+ 1)+ logl'(m+v +1)—
—logT'2m+v+1)—logl'(v —n+1) —log(m+ 1)].

So, by applying Hadamard’s theorem [17, p. 26] we can write the infinite product representation of
hy, ,(2) as follows:

() =] (1 - i) 3.7)

)
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where (51(,% denotes the mth positive zero of the function h;, ,,. From Lemma 2.5 for v > n — 1 the

function h;,,, € LP, and the smallest positive zero of h;,,, does not exceed the first positive zero
of J3.
By means of (3.5) we have

zh!” (2
1+ /Mn():lfz (n)z ‘
hVﬂ’l(z) mzl 5u,m — Z
By using the inequality (3.2), for all z € D st > We get the inequality

Zhgn(z) T
142w s N
R%'*m¢a>— 2

m>1 Ovgm — T

where |z| = 7. Thus, for r € (0 5(")), we have

» Yl
zhl . (2) rhl (1)
inf JRel1 v,n -1 vn '
%le<+mwﬂ} ()
The function H,,, : (0, 55771)) — R, defined by
rhl. (1)
Hyp(r) =1+ 7=,
o Rl (1)
is strictly decreasing and lim,\ o H,,(r) = 1 > § and limr/(;(n) H,,(r) = —oo. As a result, in
v,1

view of the minimum principle for harmonic functions for z € D,, we obtain that

(1 )
%’*mg@>>ﬁ

if and only if r3 is the unique root of

situated in (O 1) (n)) .

Pl

Theorem 3.2 is proved.

With regards to Theorem 3.2, we tabulate the radius of convexity for f,,, g, and h,, for a
fixed v = 3.5, n = 0,1,2,3 and, respectively, 5 = 0 and 5 = 0.5. These are given in Table 3.2.
Also, in Table 3.2, we see that radius of convexity is decreasing according to the order of derivative
and the order of convexity. On the other words, from all these results we concluded that 7‘%( fvo) >
> r§(fo1) > r§(fu2) > ... >15(fon) > ... for € [0,1) and v > n — 1, n € Ny. In addition to,
we can write 75 (fu.n) <75 (fun) for 0 < o < B <1and v >n—1, n € No. Same inequalities
is also true for 75(gy,») and 75 (hy, ).
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Table 3.2
r5(f3.5n) r5(93.5n) r§(h3.sm)

n

B=08=05| B=0|8=05| B=0] B8=05
0 | 27183 | 2.0865 | 0.5234 | 1.1461 | 6.2189 | 3.7194
1| 1.8179 | 1.3998 | 1.2017 | 0.9084 | 3.7394 | 2.2873
21 1.0592 | 0.8123 | 0.8833 | 0.6715 | 1.9450 | 1.2190
3104141 | 0.3131 | 0.5683 | 0.4350 | 0.7726 | 0.4968

For n = 0 in the Theorem 3.2 we obtain the results of Baricz and Szasz [4]. Our results is a
common generalization of these results.

3.2. Bounds for radii of starlikeness and convexity of the functions g, ,, and h, ;. In this
subsection, we consider two different functions ¢, , and h,, which are normalized forms of the
Bessel function derivatives of the first kind given by (1.1). Here, firstly, our aim is to show that the
radii of univalence of these functions correspond to the radii of starlikeness.

Theorem 3.3. The following inequalities hold:

(@) If v >n—1, then r*(g,) satisfies the inequalities

7 (Gun) < V24/aun,

1

2V3 [
— <rt <2V3y | —m8m——.
3 Qyn r (gy,n) f 9a1/’n — 5b1/7n

(b) If v >n—1, then r*(hy,) satisfies the inequalities

dayn — 3b1/,n ’

v+ 2 (v+4)(v+3)
and b, = .
v—n+2)(rv—n+1) ’ v—n+4)(v—-—n+3)(r+2)
Proof. (a) By using the first Rayleigh sum (2.6) and the implict relation for r*(g,,,), obtained
by Kreyszing and Todd [16], we get, for all v > n — 1,

Where a, , =

1 2 2 v+ 2
<r*(gu,n))2_z<j<n> >Z<j<n>)2_2(y_n+2)(y—n+1)'

2
m2>1 V,m) - (T*(gy,n))Q m>1 v,m

Now, by using the Euler — Rayleigh inequalities it is possible to have more tight bounds for the radius
of univalence (and starlikeness) r*(g,,). We define the function ¥, ,(2) = g, ,(2), where g,

defined by (3.5). Now, taking logarithmic derivative of both sides of (3.5) for |z| < 757,11)7 we have

\Illy,n(z) _ Z 2z

Yuanlz) 251 (7%)2 — 22
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— _9 Z Z L2k+1 _ 9 ZU’“ 22 (3.8)

2(k+1
m>1k>0 <ny m) k>0

—k
where o), = Zm>1 ('yy‘%) is Euler—Rayleigh sum for the zeros of ¥, ,,. Also, using (3.4) from

the infinite sum representation of ¥, ,,, we obtain

2m+1
\II:/,TL(Z) - ZmZO UmZ

= , 3.9
IO SR T e
where
0. — 2(-=1)"HT2m + v+ 3)T(v —n+1)(2m + 3)
" ml4mHIT(2m —n+ v+ 3)['(m + v + 2)
and
Vo (=D)"T'2m+v+1DI'(v—n+1)2m+1)

midmT(2m —n+v+1)I'(m+v+1)

By comparing the coefficients with the same degrees of (3.8) and (3.9), we obtain the Euler — Rayleigh
sums

B 3(v+2)
AT A —n+2)(v—n+1)
and
B 3(v+2) "
2T —nt2)(v—n+l)
» < 3(v+2) B 5(v+4)(v+3) )
v—-n+2)v—-n+1) 3v-n+4)v-n+3)v+2)/)

By using the Euler —Rayleigh inequalities
o, F < (’y(n)) < —
k v,1 Olt1

forv >n—1, k € Nand k£ = 1, we get the following inequality:

dv—n+2)(v—m+1)
3(v+2)

< (1" (gun))? <

3(v+2) B 5(v+4)(v+3)
v—n+2)v—n+1) 3v—-—n+4)(v—n+3)(r+2)

and it is possible to have more tighter bounds for other values of & € N.
(b) By using the first Rayleigh sum (2.6) and the implict relation for 7*(h, ), obtained by
Kreyszing and Todd [16], we get, for all v > n — 1,
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1 1 1 v+ 2
3 D IPRE -
* 2 2 _ —
m(hun) o= (ﬁ%) (b)) met (j%) 20 —n+2)(v—n+1)
Now, by using the Euler —Rayleigh inequalities it is possible to have more tight bounds for the radius
of univalence (and starlikeness) 7*(h,,,). We define the function ®,,(z) = hj,, (), where hj,,
defined by (3.6) or (3.7). Now, taking logarithmic derivative of both sides of (3.7), we have

P, ,(2)
D 3) S
vn m>1 Ov,m m>1k>0 ( )
== izt J2l <0l (3.10)
k>0

-k
where py = Zm>1 (51(,”721) is Euler—Rayleigh sum for the zeros of ®, ,,. Also, using (3.6) from

the infinite sum representation of ®,, ,,, we obtain

m
P, . (2) _ ZmZO Kmz

= , 3.11
@y n(2) ZmZU Lp,2™ (G40
where
o (=)™ 2m + v + 3)I (v — n+ 1)(m + 2)
" m4mHIT(2m —n+ v+ 3)I'(m + v+ 2)
and
L, — D)"TC2Cm+v+DI'(v—n+1)(m+1)

mldmI'(2m —n+v+1)I'(m+v+1)

By comparing the coefficients with the same degrees of (3.10) and (3.11), we get the Euler — Rayleigh
sums

_ v+2
P —n+2)(v—n+l)
and
_ v+2
P2 —nt+2—n+t1) "
><< v+2 B 3(v+4)(v+3) )
v—n+2)v—n+1) 4v-n+4)v-n+3)r+2)/)

If we use the Euler — Rayleigh inequalities

_1
Pt < 5571) < P
Pk+1

)

forv >n—1, k€ Nand k = 1, then we obtain the following inequality:
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2v—n+2)(r—n+1)
v+2

<1 (hyp) <

v+2 B 3(v+4)(v+3)
v—n+2)v—n+1) 4v—-n+4)(v—n+3)(v+2)

and it is possible to have more tighter bounds for other values of £ € N.

Theorem 3.3 is proved.

If we take n = 0 in the Theorem 3.3 we obtain the results of Aktas et al. [1]. Our results is
a common generalization of these results. For special cases of parameters v and n, Theorem 3.3
reduces tight lower and upper bounds for the radii of starlikeness and convexity of many elemanter

. 3 .
functions. For example, for v = 3 and n = 2 in Theorem 3.3, we have

D) 3
= < 7‘*<gg,2(z) =4sinz — 4zcosz) < \/;

2940

3
5 < (h%Q( )—4\/§sm\/§—4zcos\f) < 969"

The next result concerning bounds for radii of convexity of functions g, , and h,, .

and

Theorem 3.4. The following statements hold:
(@) If v>mn—1, then r°(gy,) satisfies the inequalities

2 <71(gun) <6 !
ay. T —_— .
gV <7 (g 81a, — 250,

(b) If v > n —1, then r°(h,,) satisfies the inequalities

16

—1 c

< 1(hyn) <
vn ST ( I/,n) 16au7n - gbl/,n

a
where a,,,, and b, given by in Theorem 3.3.

Proof. (a) By using the Alexander duality theorem for starlike and convex functions we can
say that the function g, ,(2) is convex if and only if zg,,(2) is starlike. But, the smallest positive
zero of z +— 2(2g,,,(2))" is actually the radius of starlikeness of z + (zg,,,(z2)), according to
Theorems 3.1 and 3.2. Therefore, the radius of convexity r°(g,,,) is the smallest positive root of the
equation (zg;,,,(2))" = 0. Therefore, from (3.4), we have

i me2m+ 1) T2m+ v+ Dy —n+1) o
2™,
m‘4mF 2m—-n+v+1)I'(m+v+1)

AVJL(Z) Zgz/n
m=0

Since the function g, ,,(z) belongs to the Laguerre—Polya class of entire functions and LP is
closed under differentiation, we can say that the function A, ,,(2) € LP. Therefore, the zeros of the
function A, ,, are all real. Suppose that dl(,n,)n are the zeros of the function A, ,,. Then the function

A, n, has the infinite product representation as follows:
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A =T [1- - |- (3.12)
m>1 (d&"%)
By taking the logarithmic derivative of (3.12), we get
A n(2)

v,n z . z B
Aal) 2y — =

m>1 (d(yn%) — 22

=23 N P = 9N P < dlY, (3.13)

(n) \ 2(k+1)
m>1k>0 (d,, m) k>0

—k
where Ky, = Zm>1 (d(ynr)n) is Euler —Rayleigh sum for the zeros of A, ,,. On the other hand, by

considering infinite sum representation of A, ,,(z), we obtain

2m—+1
A;/,n(z) - ZmZO sz

= : 3.14
Ayn(z) ZmZO Y, 22m G19
where
X 2(=1)™Hr@2m + v+ 3)I'(v — n+ 1)(2m + 3)?
" mimHT(2m —n+ v+ 3)I'(m + v + 2)
and
¥, — (- 2m+v+ 1D)I(v —n+1)(2m + 1)?

mldmI'(2m —n+v+1)I(m+v +1)
By comparing the coefficients of (3.13) and (3.14), we have

B 9(v+2)
T A —n+2)v-n+1)
and
B 9(v+2) "
"= 16(v —n+2)(r—n+1)
" < 9(v+2) B 25(v+4)(v+3) )
v—n+2)v—-n+1) 9Yv-n+4)v-n+3)v+2)/)

By using the Euler — Rayleigh inequalities
2
’“ < (df,l)) <k
KEk+1
forv >n—1, ke Nand k = 1, we get the inequality

Av—mn+2)(rv—m+1)
(v +2)

< (r(gun))” <
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I(v+2) B 25(v +4)(v + 3)
v—n+2)v—n+1) 9wv-—-n+4)(v—n+3)(v+2)

and it is possible to have more tighter bounds for other values of k € N.

(b) By using the same procedure as in the previous proof, we can say that the radius of convexity
7°(hy,n) is the smallest positive root of the equation (zhﬁ,’n(z))/ = 0 according to Theorem 3.2. From
(3.6), we get

o0
Z 1)21(2 DI(v—n+1
O n(z ): zh’ mm+ 1) T2m+v+1)I'(v—n+1) ,, (3.15)
’ = m'4mF Cm—n+v+1DI'(m+v+1)

Moreover, we know h, ,(z) belongs to the Laguerre—Podlya class of entire functions and LP, con-
sequently, ©, ,(z) € LP. On the other words, the zeros of the function ©, , are all real. Assume

that l% are the zeros of the function ©, . In this case, the function ©,,,, has the infinite product
representation as follows:

2

O =] [1- |- (3.16)
m>1 (l,(,%)
By taking the logarithmic derivative of both sides of (3.16) for |z| < ll,l) , we have
@Ln(z) k
Ovn(z) Z ln Z Z R1” *Zwkﬂz ’ G.17)
vn m>1 tvym — m>1k>0 (,,m) k>0

—k
where wy, = Zm>1 (l(ynn)l) . In addition, by using the derivative of infinite sum representation

considering infinite sum representation of (3.15), we obtain

@’z

= Tw2™/ Y Sz, (3.18)
Z m>0 m>0
where
T - (=)™ @2m+ v+ 3)T(v —n+ 1)(m + 2)?
T AT (2m —n+ v+ 3)0(m+ v+ 2)
and
s - (- 2m+v+ 1)y —n+1)(m+1)32

ml4dml(2m —n+v+ )I(m+v+1)
By comparing the coefficients of (3.17) and (3.18), we get

v+2
(v—n+2)(r—n+1)

w1 =

and
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_ v+2
U T —nt D)
><< v+ 2 B I(v+4)(v+3) )
v—n+2)v—mn+1) 16(r—-—n+4)v—-—n+3)(r+2)/

By using the Euler—Rayleigh inequalities

Wk

W41

forv >n—1, k€ Nand k = 1, we have the following inequality:

(v—n+2)(rv—n+1)
v+2

<71(hyn) <

v+2 I(v+4)(v+3)

v—n+2)v—n+1) 16(v—n+4)(v—n+3)(r+2)

and it is possible to have more tighter bounds for other values of k € N.

Theorem 3.4 is proved.

If we take n = 0 in the Theorem 3.4 we obtain the results of Aktag et al. [2]. For special cases
n = 1,2, 3, we obtain following result.

Corollary 3.1. The following inequalities hold:

2 . / 1
< 1) <6y —mm———, >0,
3 al/71 r (g 71) 8].04,/71 _ 25()]/71 v

. 16

<r(hy1) < ———— v >0,
@ < (R 16ay1 — 9by1"

2w/a_1<7"c(g 9) <6y ————, v>1
3V o2 v 8lay,s — 25by2’ ’

—_
(@]
—_

a,y < r°(hy.2) v>1,

<t Qar
16(11,72 — 9bl,72

2 Jal< “(gy3) <6 . > 2
a T 5 1% s
gV s =T A3 8la,3 — 25b, 3

16

-1 c

hy Qo
al/73 <r ( 33) < 1604/73 . 9by73

V> 2,
where a,,,, and b, for n =1,2,3 given by in Theorem 3.3.
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