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GENERALIZED PICONE IDENTITY
FOR FINSLER p-LAPLACIAN AND ITS APPLICATIONS *

V3ATAJIbHEHA TOTOXHICTbD IIKOHE
TSI p-JIAIITACIAHA ®THCJIEPA TA ii 3BACTOCYBAHHS

We prove a generalized Picone-type identity for Finsler p-Laplacian and use it to establish some qualitative results for
some boundary-value problems involving Finsler p-Laplacian.

JloBeneHO y3arajibHEeHy TOTOXKHICTH THmy IlikoHe mis p-narmaciana ®iHcnepa, Ky HOTIM BHKOPHCTAHO IJIsl OTPUMAaHHS
JESKUX SKICHUX Pe3yJbTaTiB Ul TPaHUYHUX 3a]ad, [0 BKIIOYAIOTh p-naruiacian PiHciepa.

1. Introduction. In this paper, we establish a generalized Picone identity for the class of operators
Appu = div(H(Vu)P "'V H(Vau)), (1.1)

where p > 1, H:R" — [0,00), n > 2, is a strictly convex, twice differentiable function which
is positively homogeneous of degree 1, A and A, denote the usual gradient operators with respect
to variable x and &, respectively. The operators of the form (1.1) are called Finsler p-Laplacian or
anisotropic p-Laplacian. A prototype function H is given by

1/r
( = H§|| (Z |§z|r> ;o r>1L

For this choice of H, the operator (1.1) reduces to

Appv = div (|Vo]|P 2 V70), (1.2)
|T_21]mn). (1.2) reduces to p-Laplacian if r = 2 and p € (1, c0),

while it reduces to pseudo p-Laplacian if » = p > 1. In case of r = p = 2, we get standard Laplace

where V"0 = (|vg, [ 20z, - -+, Ve,

operator from (1.2).

Finsler p-Laplacian has been studied by several authors. V. Ferone and B. Kawohl [18] proved
some properties of Finsler p-Laplacian such as existence of fundamental solution, maximum prin-
ciple, comparison principle, mean value property etc. Belloni et al. [6] obtained positivity and
simplicity of the first eigenvalue and Faber — Krahn inequality for Finsler p-Laplacian with Dirichlet
boundary conditions. They also established symmetry of positive solutions to

_AH,nu = f(u) in
u=0 on 01,

where ) is a smooth and bounded domain in R”. G. Wang and C. Xia [26] obtained a lower bound for
the first eigenvalue for Finsler p-Laplacian with Neumann boundary conditions. F. Della Pietra and
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N. Gavitone [9, 10] discussed existence and properties of the first eigenvalue of Finsler p-Laplacian
with Dirichlet and Robin boundary conditions. G. Wang and C. Xia [27] studied blow up analysis
for the problem —Apgou = V(x)e" in dimension 2. We refer to [8, 22, 24, 29] and reference cited
therein for some further existence and qualitative results involving Finsler p-Laplacian.

Next, let us recall some historical developments in Picone identity. The classical Picone iden-
tity [23] says that if v and v are differentiable functions such that v > 0 and u > 0, then

u

|Vu|® + “—§|W|2 —2YVuVu = [Vuf2 - v < ) Vo > 0. (1.3)
v v v
(1.3) has an enormous applications to second-order elliptic equations and systems (see, for
instance, [1, 2, 21] and the references therein). In order to apply (1.3) to p-Laplace equations,
W. Allegretto and Y. X. Huang [3] extended (1.3) as follows.
Theorem 1.1 [3]. Let v > 0 and u > 0 be differentiable functions in a domain ) of R™. Denote

p—1
v |Vo|P~2Vu Vo,

up
— p _ p_
L(u,0) = [Vul? + (p — 1) ToP — pg

D
R(u,v) = [Vulp -V (“1> IVo[P~2Vo.
VP

Then L(u,v) = R(u,v). Moreover, L(u,v) > 0 and L(u,v) = 0 a.e. in Q if and only if V (E> =0
v
a.e. in §2.

A nonlinear analogue of Theorem 1.1 was proved by J. Tyagi [25] in case of p = 2 and by K. Bal
[4] in general case. The results of K. Bal [4] was further generalized by T. Feng [16] as follows.

Theorem 1.2 [16]. Let v > 0 and u > 0 be differentiable functions in a domain 2 C R",

1 1
n > 3. Assume that differentiable functions g(u) and f(v) satisfy that forp > 1, ¢ > 1, —+—- =1,
P q

g(u)f'(v)[Vu[P _ p ¢ (w)|Volp~11°
or el

where g(u), ¢'(u) > 0 for u> 0; g(u), ¢'(u) =0 for u=0, and f(v), f'(v) > 0. Denote

[Vo[P2VoVu L 9@ f ) Vol?
f(v) RACHIE

L(u,v) = |VulP — g'(w)

R(u,v) = |Vulf =V (?EZ;) |Vo[P~2Vo.

Then L(u,v) = R(u,v) > 0. Moreover, L(u,v) = 0 a.e. in § if and only if

N O 2 () [Volr=17 g(u) /()] Vo
v(3) =019 ‘[g PF(0) } 5[9 PF(0) } T

a.e. in €.
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There are several other interesting articles dealing with Picone identity in different contexts. For
instance, for a Picone-type identity to higher order half linear differentiable operators, we refer to [20]
and the references therein, for Picone identities to half-linear elliptic operators with p(x)-Laplacians,
we refer to [28] for Picone-type identity to pseudo p-Laplacian with variable power, we refer to [7]
and for Picone identity for biharmonic operators and applications, we refer to [11—-14, 17]. J. Jaro$
[19] proved a Picone identity for the class of operators (1.1). Their main result is follows.

Theorem 1.3. Let 2 C R" be a domain and H be an arbitrary norm in R™ which is of class
C* for x # 0. Assume that u,v € VV&J’f(Q) N C () with v(z) # 0 in Q and denote

JufP~%u

O (u,v) := HVu)’ + (p — 1)‘5’;H(V1})p —pm(Vu, H(Vv)P~ 'V H(Vv)).

Then

|ul? -1
H(Vu)? — <V <|U|p_% , HVv)P""VH(Vv) ) = ®(u,v)
and ®(u,v) > 0 a.e. in Q. If, in addition, H(§)P is strictly convex in R™, then ®(u,v) =0 a.e. in
Q if and only if u is a constant multiple of v in ).

Bal et al. [5] generalized Theorem 1.3 as follows.

Theorem 1.4. Let Q C R" be a domain. For u, v € Wlo’f(Q) NC () with w > 0 and v > 0,
define

A(u,v) = H(Vu)? — I; (Vu, H(Vv)P~ Ve(Vo )) + WH(VU)I) =

< ( ),H(Vv)p_1V5H(Vv)>ZO

for f € M = {f: (0,00) — (0,00)f: f'(y) > (p — l)f(y)%} C CY((0,00)). Moreover,
A(u,v) =0 a.e. in Q if and only if u = cv a.e. in S, where c is a constant.

In this paper, we prove a new nonlinear Picone-type identity, which is a generalization of Theo-
rem 1.4. The main result of this paper is follows.

Theorem 1.5. Let H be an arbitrary norm in R™ which is of class C*(R"\{0}). Assume that
U, v € VV&DCP(Q) NC(Q) with u > 0 and v > 0, where Q C R"™ is a domain. Assume that g and f
are twice differentiable functions satisfying

g(u) f'(v)H(Vv)P P (g’(u)H(Vv)pﬂ)q’

(f(v))? T q pf(v)
where g(u), ¢'(u) > 0 for u> 0, g(u), ¢'(u) =0if u=0, f(v), f'(v) > 0. Denote
OO o) R
L(u,v) = H(Vu)? + F)? =L H(Vu)P — <f(v) Vu, H V)P~ 'VeH(V )>,
R(u,v) = < < ) H(Vv)P~lv H(Vv)>

Then (i) L(u,v) = R(u,v) > 0; (ii) L(u,v) = 0 a.e. in Q2 if and only if
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IO g(u) f' () H(Vv)P _ p (g (w)H (Vo
VU_(pf(v)) Ve, (o)) 2q< 50 ) (14)
o (g (WH(Vv)P N\

H(Vu) _< oF ) ) (1.5)

Remark 1.1. 1. If we choose g(u) = uP in Theorem 1.5, then we obtain Picone identity of Bal
et al. [5].

2. If we choose g(u) = uP and f(v) = vP~! in Theorem 1.5, then we obtain Picone identity of
J. Jaros [19].

3. If we choose H (§)
T. Feng [16].

This paper is organized as follows. In Section 2, we state some elementary properties of an
arbitrary norm. In Section 3, we prove Theorem 1.5 and Section 4 deals with some applications of
Theorem 1.5.

2. Preliminaries. In this section, we recall some elementary properties of an arbitrary norm
on R™. For further details, we refer to [19] and references therein. Let H : R™ — [0,00) be any
arbitrary norm in R", i.e., a strictly convex, twice differentiable function such that:

(i) H(&) > 0 for any & # 0,

(il) H(t&) = [t|H (&) forall £ € R™ and ¢ € R,

(i) if H is C*(R™\{0}), then V H (t£) = sgn tVH(£) for all £ # 0 and t # 0,

(iv) (§,VeH(§)) = H(§) for all £ € R™, where the left-hand side is zero for £ = 0,

(v) there exist constant 0 < ¢; < ¢ such that ¢1|z| < H(z) < eox|.

Next, we define the dual norm Hy of H by

1/p
( E n ) ]fi\p> in Theorem 1.5, then we obtain Picone identity of
1=

(z,8)
0e) = 2 ey
where (-, -) is the usual inner product in R".
Any norm H of class C! for £ # 0 and its dual H satisfy the following properties:
(i) Ho(VH(E)) =1 for € € R"\{0},
(i) H(VHp(z)) =1 for x € R"\{0},
(i) H[Ho(x)VHo(x)|Ve[Ho(x)VHo(z)] = =,
(i) HolH(&)VeH (€)VHo[H(E)VeH ()] = €,
where (ii), (iii) hold for all z,£ € R", H(0)V¢H (0) and Hy(0)VH(0) are defined to be 0.
The Holder-type inequality for norm H as follows:

H(&§)Ho(x) = (z,8), 2.1

and equality holds if and only if Hy(x) = H(n).

Next, we state an elementary lemma. For a proof we refer to [19].

Lemma 2.1. Let H be a norm in R™ such that H € C*(R™\{0}) and HP, 1 < p < oo, is
strictly convex. If

H(EP + (p— 1) H(n)? —p(& H(n)*"'VH(n)) =0

Sfor some £, € R", n#0, and H(§) = H(n), then £ = .
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Lemma 2.2 (Young’s inequality). If a and b are two nonnegative real numbers and p and q are

1 1
such that — + — = 1, then equality
P g

ab < — + — (2.2)
p

holds if and only if aP? = b1.
Proof. For a proof, we refer to [15].
3. Proof of Theorem 1.5. It is easy to see that

o)\ f(0)g () Vu — g(u) /(1) Vo
V( )‘ ()2 ’

R(u,v) = H(Vu)P — <V <M),H(W)p—1v5H(W)> =

f()
7H(Vv)p1v§H(vv)> + <W

,H(Vv)p_1V§H(Vv)> + g((;zf;gg)H(Vv)p =

g (u)Vu
f)

= H(Vu)? — ,H(Vv)pIVEH(Vv)> =

g (u)Vu
f)

vy

= H(Vu)? + g(u)f,(v)H(vv)p _ g'(w)H (V)P H(Vu) n g (u)H (V)P H(Vu) B
fw) f(v)

o g/(u)vu ,Upfl v —
< S (0P Ve (v >>

Vw1 (f@ BT g w)H (Vo) H (V)
_p[ p +q< pf(v) )] f(v)
D
g(w) f'(V)HN0)P  p (g (w)H(Vo)P'\?
HERCOE q< P (v) ) "
(In
g'(w)H (Vo))" H(Vu) <9’(U)Vu
f(v) f(v)

(1)

+

+ : H(Vv)p_1V§H(Vv)> .

Now, we plan to show that (I), (IT), (IIl) are nonnegative. Take a = H(Vu) and b =

/ p—1
_ gHNvP (2.2), we get

pf(v)
H(Vu)? 1 (g/(u)H(vv)Pl ) a |

g (wH(Vo)P H(Vu) _ 41
- pf(v)

pf(v) p q
which implies (I) > 0. By using (1.4), we obtain (II) > 0. To show (III) > 0, let us rewrite
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G. DWIVEDI

1456
g\ o\
() = H(Vu)H (( ) ) Vv) -

(e (o) s () w))

The equality in (I) holds if and only if

o = (FE) = (it ) oo

H(Vu) = H (( 5}%)1@1 W) ae.in Q.

1/p—1
) Vv # 0 for some zp € S := {z € Q: R(u,v) = 0}, then

() = H(Vu)’ + (1) (j}(?) H(Vop ~ S (V0P (V) -
( g/(u 1/p—1 ) B

DH pf(v

1/p 1 p—1 1/p 1
f(v)

_p<vu,H<

When (I) = 0, by Lemma 2.1,
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/ 1/p—1
f < ;ff?)) Vv = 0 for some subset Sy of S, then Vu = 0 a.e. in Sp which implies Vu =
9

B (p% > e

Theorem 1.5 is proved.

4. Applications of Theorem 1.5. In this section, we use Theorem 1.5 to prove some qualitative
result. We assume that 2 is a smooth and bounded domain in R” and the functions f and g satisfy
assumption of Theorem 1.5. First, we prove a Hardy-type inequality.

Theorem 4.1 (Hardy-type inequality). Let 2 be a bounded domain in R™ and v € C°(Q) be
such that

—Apgpv > Mk(z)f(v), v>0 in Q

for some N\ > 0 and nonnegative function k € L*(Q2). Then, for any uw € C*(Q), w > 0 and
g9(u) € C(9),

/ H(Vu)Pda > ) / k(z)g(u)dz.
Q

Q
Proof. Take ¢ € C°(R2), ¢ > 0. By Theorem 1.5, we have

0< /L(gb,v)dﬂc:

Q

- /R(¢,v) dr = /H(W)de -A (ffg;) H(Vo)P 'V H(Vo)de =
Q Q

_ vazt [ IDA. de
_/H(ng)d +Q/f(v)AH,p dr <

Q

< / H(Vo)ds — A / 9(&)k(z) da,
Q Q

and letting ¢ — u, we get
/H(Vu)pd:v > )\/k(a:)g(u)daz.
Q Q

Theorem 4.1 is proved.

Next, we prove a comparison result.

Theorem 4.2. Let ki(x) and kao(x) be two continuous functions such that ki(x) < ka(z) on a
bounded domain Q0 C R™. If there exists a function u € C?(Q) satisfying

ay e R@w

P U )

u>0,gu) >0 in £, (4.1)
u=0=g(u) on 09,
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then any nontrivial solution v to the equation
—Agpv =ka(x)f(v) in (4.2)

must change sign.

Proof. Assume that v does not change sign and ¢ > 0. Since g(u) = 0 on 01, 97+ €
v

€ Wol’p(Q). By Theorem 1.5,

0< /L(u, v)da = /R(u,v)dm -

Q Q

— /H(Vu)pdx - / <v (M),H(Vv)p_1V5(VU)>dx =
Q Q

:/H(Vu)pdx-l-/f(i()uj_eAH,pvdx'
Q Q

As ¢ — 0, we obtain

/ H(Vu)Pdz + / % Hpvdz > 0, 4.3)
Q

On using (4.1) and (4.2) in (4.3), we have

/ (ky () — ko(2))g(u)d > 0,

Q

which is a contradiction because k1 (z) < ka2(x) and g(u) > 0.

Theorem 4.2 is proved.

Finally, we establish a qualitative result concerning a system of equations involving Finsler p-
Laplacian.

Theorem 4.3. Let ) be a bounded domain in R"™ and (u,v) € C*(Q) x C?(Q) be a positive
solution to the elliptic system

/ 1/p—1
Then Vu = (g (u) > V.
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Proof. For any ¢1, ¢o € Wol’p(Q), we get

/ H(Vu)P 'V H(Vu)Vrde = / f(v)prde,
Q

Q
/ H(Vo)P~ 'V H (Vo) Vedr = / M@dw.
Q

g(u)
Q
Let £ > 0. Since g(u) = 0 on 012, f(i()uj—g € Wol’p(Q). On choosing ¢1 = u, ¢z = f(i()uj-g’ we
obtain
/H(Vu)p_1V£H(Vu)Vud:r = /f(v)udac, (4.4)
Q Q
!H(V@)pIVgLI(Vv)V (Lf"(f)()zﬁs) dr = Q/uf(v)dm (4.5)

On using (4.4) and (4.5), we have

Q/ H(Vo)P 'V H(Vo)V (%) do = ! wf(v)dz =

= / H(Vu)P 'V H(Vu)Vudr =
Q
= /H(Vu)pdx.
Q

As € — 0, we obtain

/L(u,v)dx - /R(u, v)dz =0

)
o)

g\
and, by Theorem 1.5, Vu = <f > a.e. in {).

Theorem 4.3 is proved.
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