DOI: 10.37863/umzh.v73i11.1050

UDC 517.9

G. Dwivedi (Birla Inst. Technology and Sci. Pilani, Rajasthan, India)

GENERALIZED PICONE IDENTITY FOR FINSLER p-LAPLACIAN AND ITS APPLICATIONS*

УЗАГАЛЬНЕНА ТОТОЖНІСТЬ ПІКОНЕ ДЛЯ *p*-ЛАПЛАСІАНА ФІНСЛЕРА ТА ЇЇ ЗАСТОСУВАННЯ

We prove a generalized Picone-type identity for Finsler p-Laplacian and use it to establish some qualitative results for some boundary-value problems involving Finsler p-Laplacian.

Доведено узагальнену тотожність типу Піконе для p-лапласіана Фінслера, яку потім використано для отримання деяких якісних результатів для граничних задач, що включають p-лапласіан Фінслера.

1. Introduction. In this paper, we establish a generalized Picone identity for the class of operators

$$\Delta_{H,p}u := \operatorname{div}(H(\nabla u)^{p-1}\nabla_{\xi}H(\nabla u)), \tag{1.1}$$

where p > 1, $H: \mathbb{R}^n \to [0, \infty)$, $n \geq 2$, is a strictly convex, twice differentiable function which is positively homogeneous of degree 1, Δ and Δ_{ξ} denote the usual gradient operators with respect to variable x and ξ , respectively. The operators of the form (1.1) are called Finsler p-Laplacian or anisotropic p-Laplacian. A prototype function H is given by

$$H(\xi) = \|\xi\|_r = \left(\sum_{i=1}^n |\xi_i|^r\right)^{1/r}, \quad r > 1.$$

For this choice of H, the operator (1.1) reduces to

$$\Delta_{H,p}v = \operatorname{div}\left(\|\nabla v\|_r^{p-2}\nabla^r v\right),\tag{1.2}$$

where $\nabla^r v = (|v_{x_1}|^{r-2}v_{x_1}, \dots, |v_{x_n}|^{r-2}v_{x_n})$. (1.2) reduces to p-Laplacian if r=2 and $p \in (1, \infty)$, while it reduces to pseudo p-Laplacian if r=p>1. In case of r=p=2, we get standard Laplace operator from (1.2).

Finsler *p*-Laplacian has been studied by several authors. V. Ferone and B. Kawohl [18] proved some properties of Finsler *p*-Laplacian such as existence of fundamental solution, maximum principle, comparison principle, mean value property etc. Belloni et al. [6] obtained positivity and simplicity of the first eigenvalue and Faber-Krahn inequality for Finsler *p*-Laplacian with Dirichlet boundary conditions. They also established symmetry of positive solutions to

$$-\Delta_{H,n}u=f(u)\quad \text{in}\quad \Omega,$$

$$u=0\quad \text{on}\quad \partial\Omega,$$

where Ω is a smooth and bounded domain in \mathbb{R}^n . G. Wang and C. Xia [26] obtained a lower bound for the first eigenvalue for Finsler p-Laplacian with Neumann boundary conditions. F. Della Pietra and

^{*} This paper was supported by Science and Engineering Research Board, India (the grant MTR/2018/000233).

N. Gavitone [9, 10] discussed existence and properties of the first eigenvalue of Finsler p-Laplacian with Dirichlet and Robin boundary conditions. G. Wang and C. Xia [27] studied blow up analysis for the problem $-\Delta_{H,2}u = V(x)e^u$ in dimension 2. We refer to [8, 22, 24, 29] and reference cited therein for some further existence and qualitative results involving Finsler p-Laplacian.

Next, let us recall some historical developments in Picone identity. The classical Picone identity [23] says that if u and v are differentiable functions such that v > 0 and $u \ge 0$, then

$$|\nabla u|^2 + \frac{u^2}{v^2}|\nabla v|^2 - 2\frac{u}{v}\nabla u\nabla v = |\nabla u|^2 - \nabla\left(\frac{u^2}{v}\right)\nabla v \ge 0.$$
 (1.3)

(1.3) has an enormous applications to second-order elliptic equations and systems (see, for instance, [1, 2, 21] and the references therein). In order to apply (1.3) to p-Laplace equations, W. Allegretto and Y. X. Huang [3] extended (1.3) as follows.

Theorem 1.1 [3]. Let v > 0 and $u \ge 0$ be differentiable functions in a domain Ω of \mathbb{R}^n . Denote

$$L(u,v) = |\nabla u|^p + (p-1)\frac{u^p}{v^p}|\nabla v|^p - p\frac{u^{p-1}}{v^{p-1}}|\nabla v|^{p-2}\nabla u \,\nabla v,$$
$$R(u,v) = |\nabla u|^p - \nabla\left(\frac{u^p}{v^{p-1}}\right)|\nabla v|^{p-2}\nabla v.$$

Then L(u,v)=R(u,v). Moreover, $L(u,v)\geq 0$ and L(u,v)=0 a.e. in Ω if and only if $\nabla\left(\frac{u}{v}\right)=0$ a.e. in Ω .

A nonlinear analogue of Theorem 1.1 was proved by J. Tyagi [25] in case of p=2 and by K. Bal [4] in general case. The results of K. Bal [4] was further generalized by T. Feng [16] as follows.

Theorem 1.2 [16]. Let v>0 and $u\geq 0$ be differentiable functions in a domain $\Omega\subseteq\mathbb{R}^n$, $n\geq 3$. Assume that differentiable functions g(u) and f(v) satisfy that for p>1, q>1, $\frac{1}{p}+\frac{1}{q}=1$,

$$\frac{g(u)f'(v)|\nabla v|^p}{[f(v)]^2} \ge \frac{p}{q} \left[\frac{g'(u)|\nabla v|^{p-1}}{pf(v)} \right]^q,$$

where g(u), g'(u) > 0 for u > 0; g(u), g'(u) = 0 for u = 0, and f(v), f'(v) > 0. Denote

$$L(u,v) = |\nabla u|^p - \frac{g'(u)|\nabla v|^{p-2}\nabla v\nabla u}{f(v)} + \frac{g(u)f'(v)|\nabla v|^p}{[f(v)]^2},$$
$$R(u,v) = |\nabla u|^p - \nabla\left(\frac{g(u)}{f(v)}\right)|\nabla v|^{p-2}\nabla v.$$

Then $L(u,v) = R(u,v) \ge 0$. Moreover, L(u,v) = 0 a.e. in Ω if and only if

$$\nabla\left(\frac{u}{v}\right) = 0, \ |\nabla u|^p = \left\lceil\frac{g'(u)|\nabla v|^{p-1}}{pf(v)}\right\rceil^q, \qquad \frac{p}{q}\left\lceil\frac{g'(u)|\nabla v|^{p-1}}{pf(v)}\right\rceil^q = \frac{g(u)f'(v)|\nabla v|^p}{[f(v)]^2}$$

a.e. in Ω .

There are several other interesting articles dealing with Picone identity in different contexts. For instance, for a Picone-type identity to higher order half linear differentiable operators, we refer to [20] and the references therein, for Picone identities to half-linear elliptic operators with p(x)-Laplacians, we refer to [28] for Picone-type identity to pseudo p-Laplacian with variable power, we refer to [7] and for Picone identity for biharmonic operators and applications, we refer to [11–14, 17]. J. Jaroš [19] proved a Picone identity for the class of operators (1.1). Their main result is follows.

Theorem 1.3. Let $\Omega \subseteq \mathbb{R}^n$ be a domain and H be an arbitrary norm in \mathbb{R}^n which is of class C^1 for $x \neq 0$. Assume that $u, v \in W^{1,p}_{loc}(\Omega) \cap C(\Omega)$ with $v(x) \neq 0$ in Ω and denote

$$\Phi(u,v) := H(\nabla u)^p + (p-1)\frac{|u|^p}{|v|^p}H(\nabla v)^p - p\frac{|u|^{p-2}u}{|v|^{p-2}v}\langle \nabla u, H(\nabla v)^{p-1}\nabla_{\xi}H(\nabla v)\rangle.$$

Then

$$H(\nabla u)^p - \left\langle \nabla \left(\frac{|u|^p}{|v|^{p-2}v} \right), \ H(\nabla v)^{p-1} \nabla_{\xi} H(\nabla v) \right\rangle = \Phi(u, v)$$

and $\Phi(u,v) \geq 0$ a.e. in Ω . If, in addition, $H(\xi)^p$ is strictly convex in \mathbb{R}^n , then $\Phi(u,v) = 0$ a.e. in Ω if and only if u is a constant multiple of v in Ω .

Bal et al. [5] generalized Theorem 1.3 as follows.

Theorem 1.4. Let $\Omega \subseteq \mathbb{R}^n$ be a domain. For $u, v \in W^{1,p}_{loc}(\Omega) \cap C(\Omega)$ with $u \geq 0$ and v > 0, define

$$\begin{split} A(u,v) &= H(\nabla u)^p - p \frac{u^{p-1}}{f(v)} \left\langle \nabla u, H(\nabla v)^{p-1} \nabla_{\xi} (\nabla v) \right\rangle + \frac{u^p f'(v)}{(f(v))^2} H(\nabla v)^p = \\ &= H(\nabla u)^p - \left\langle \nabla \left(\frac{u^p}{f(v)} \right), H(\nabla v)^{p-1} \nabla_{\xi} H(\nabla v) \right\rangle \geq 0 \end{split}$$

for $f \in \mathbb{M} := \left\{ f: (0,\infty) \to (0,\infty)f: f'(y) \geq (p-1)f(y)^{\frac{p-1}{p-2}} \right\} \subset C^1((0,\infty))$. Moreover, A(u,v) = 0 a.e. in Ω if and only if u = cv a.e. in Ω , where c is a constant.

In this paper, we prove a new nonlinear Picone-type identity, which is a generalization of Theorem 1.4. The main result of this paper is follows.

Theorem 1.5. Let H be an arbitrary norm in \mathbb{R}^n which is of class $C^1(\mathbb{R}^n\setminus\{0\})$. Assume that $u,v\in W^{1,p}_{\mathrm{loc}}(\Omega)\cap C(\Omega)$ with $u\geq 0$ and v>0, where $\Omega\subseteq\mathbb{R}^n$ is a domain. Assume that g and f are twice differentiable functions satisfying

$$\frac{g(u)f'(v)H(\nabla v)^p}{(f(v))^2} \ge \frac{p}{q} \left(\frac{g'(u)H(\nabla v)^{p-1}}{pf(v)}\right)^q,$$

where g(u), g'(u) > 0 for u > 0, g(u), g'(u) = 0 if u = 0, f(v), f'(v) > 0. Denote

$$L(u,v) = H(\nabla u)^p + \frac{g(u)f'(v)}{(f(v))^2}H(\nabla v)^p - \left\langle \frac{g'(u)}{f(v)}\nabla u, H(\nabla v)^{p-1}\nabla_{\xi}H(\nabla v)\right\rangle,$$
$$R(u,v) = H(\nabla u)^p - \left\langle \nabla\left(\frac{g(u)}{f(v)}\right), H(\nabla v)^{p-1}\nabla_{\xi}H(\nabla v)\right\rangle.$$

Then (i) $L(u,v) = R(u,v) \ge 0$; (ii) L(u,v) = 0 a.e. in Ω if and only if

ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 11

$$\nabla u = \left(\frac{g'(u)}{pf(v)}\right)^{1/p-1} \nabla v, \qquad \frac{g(u)f'(v)H(\nabla v)^p}{(f(v))^2} \ge \frac{p}{q} \left(\frac{g'(u)H(\nabla v)^{p-1}}{pf(v)}\right)^q, \tag{1.4}$$

$$H(\nabla u)^p = \left(\frac{g'(u)H(\nabla v)^{p-1}}{pf(v)}\right)^q. \tag{1.5}$$

Remark 1.1. 1. If we choose $g(u) = u^p$ in Theorem 1.5, then we obtain Picone identity of Bal et al. [5].

- 2. If we choose $g(u) = u^p$ and $f(v) = v^{p-1}$ in Theorem 1.5, then we obtain Picone identity of J. Jaroš [19].
- 3. If we choose $H(\xi) = \left(\sum_{i=1}^{n} |\xi_i|^p\right)^{1/p}$ in Theorem 1.5, then we obtain Picone identity of T. Feng [16].

This paper is organized as follows. In Section 2, we state some elementary properties of an arbitrary norm. In Section 3, we prove Theorem 1.5 and Section 4 deals with some applications of Theorem 1.5.

- **2. Preliminaries.** In this section, we recall some elementary properties of an arbitrary norm on \mathbb{R}^n . For further details, we refer to [19] and references therein. Let $H: \mathbb{R}^n \to [0, \infty)$ be any arbitrary norm in \mathbb{R}^n , i.e., a strictly convex, twice differentiable function such that:
 - (i) $H(\xi) > 0$ for any $\xi \neq 0$,
 - (ii) $H(t\xi) = |t|H(\xi)$ for all $\xi \in \mathbb{R}^n$ and $t \in \mathbb{R}$,
 - (iii) if H is $C^1(\mathbb{R}^n\setminus\{0\})$, then $\nabla_{\xi}H(t\xi)=\operatorname{sgn} t\nabla_{\xi}H(\xi)$ for all $\xi\neq 0$ and $t\neq 0$,
 - (iv) $\langle \xi, \nabla_{\xi} H(\xi) \rangle = H(\xi)$ for all $\xi \in \mathbb{R}^n$, where the left-hand side is zero for $\xi = 0$,
 - (v) there exist constant $0 < c_1 \le c_2$ such that $c_1|x| \le H(x) \le c_2|x|$.

Next, we define the dual norm H_0 of H by

$$H_0(x) = \sup_{\xi \neq 0} \frac{\langle x, \xi \rangle}{H(\xi)},$$

where $\langle \cdot, \cdot \rangle$ is the usual inner product in \mathbb{R}^n .

Any norm H of class C^1 for $\xi \neq 0$ and its dual H_0 satisfy the following properties:

- (i) $H_0(\nabla H(\xi)) = 1$ for $\xi \in \mathbb{R}^n \setminus \{0\}$,
- (ii) $H(\nabla H_0(x)) = 1$ for $x \in \mathbb{R}^n \setminus \{0\}$,
- (iii) $H[H_0(x)\nabla H_0(x)]\nabla_{\xi}[H_0(x)\nabla H_0(x)] = x$,
- (iv) $H_0[H(\xi)\nabla_{\xi}H(\xi)]\nabla H_0[H(\xi)\nabla_{\xi}H(\xi)] = \xi$,

where (ii), (iii) hold for all $x, \xi \in \mathbb{R}^n$, $H(0)\nabla_{\xi}H(0)$ and $H_0(0)\nabla H_0(0)$ are defined to be 0.

The Hölder-type inequality for norm H as follows:

$$H(\xi)H_0(x) \ge \langle x, \xi \rangle,$$
 (2.1)

and equality holds if and only if $H_0(x) = H(\eta)$.

Next, we state an elementary lemma. For a proof we refer to [19].

Lemma 2.1. Let H be a norm in \mathbb{R}^n such that $H \in C^1(\mathbb{R}^n \setminus \{0\})$ and H^p , 1 , is strictly convex. If

$$H(\xi)^p + (p-1)H(\eta)^p - p\langle \xi, H(\eta)^{p-1} \nabla H(\eta) \rangle = 0$$

for some $\xi, \eta \in \mathbb{R}^n$, $\eta \neq 0$, and $H(\xi) = H(\eta)$, then $\xi = \eta$.

Lemma 2.2 (Young's inequality). If a and b are two nonnegative real numbers and p and q are such that $\frac{1}{p} + \frac{1}{q} = 1$, then equality

$$ab \le \frac{a^p}{p} + \frac{b^q}{q} \tag{2.2}$$

holds if and only if $a^p = b^q$.

Proof. For a proof, we refer to [15].

3. Proof of Theorem 1.5. It is easy to see that

$$\nabla \left(\frac{g(u)}{f(v)}\right) = \frac{f(v)g'(u)\nabla u - g(u)f'(v)\nabla v}{(f(v))^2},$$

$$R(u,v) = H(\nabla u)^p - \left\langle \nabla \left(\frac{g(u)}{f(v)}\right), H(\nabla v)^{p-1}\nabla_{\xi}H(\nabla v)\right\rangle =$$

$$= H(\nabla u)^p - \left\langle \frac{g'(u)\nabla u}{f(v)}, H(\nabla v)^{p-1}\nabla_{\xi}H(\nabla v)\right\rangle + \left\langle \frac{g(u)f'(v)\nabla v}{(f(v))^2}, H(\nabla v)^{p-1}\nabla_{\xi}H(\nabla v)\right\rangle =$$

$$= H(\nabla u)^p - \left\langle \frac{g'(u)\nabla u}{f(v)}, H(\nabla v)^{p-1}\nabla_{\xi}H(\nabla v)\right\rangle + \frac{g(u)f'(v)}{(f(v))^2}H(\nabla v)^p =$$

$$= H(\nabla u)^p + \frac{g(u)f'(v)}{(f(v))^2}H(\nabla v)^p - \frac{g'(u)H(\nabla v)^{p-1}H(\nabla u)}{f(v)} + \frac{g'(u)H(\nabla v)^{p-1}H(\nabla u)}{f(v)} -$$

$$- \left\langle \frac{g'(u)\nabla u}{f(v)}, H(\nabla v)^{p-1}\nabla_{\xi}H(\nabla v)\right\rangle =$$

$$= \underbrace{p\left[\frac{H(\nabla u)^p}{p} + \frac{1}{q}\left(\frac{g'(u)H(\nabla v)^{p-1}}{pf(v)}\right)^q\right] - \frac{g'(u)H(\nabla v)^{p-1}H(\nabla u)}{f(v)}}_{f(v)} +$$

$$+ \underbrace{\frac{g(u)f'(v)H(\nabla v)^p}{(f(v))^2} - \frac{p}{q}\left(\frac{g'(u)H(\nabla v)^{p-1}}{pf(v)}\right)^q}_{(II)} +$$

$$+ \underbrace{\frac{g'(u)H(\nabla v)^{p-1}H(\nabla u)}{f(v)} - \left\langle \frac{g'(u)\nabla u}{f(v)}, H(\nabla v)^{p-1}\nabla_{\xi}H(\nabla v)\right\rangle}_{(II)}.$$

Now, we plan to show that (I), (II), (III) are nonnegative. Take $a=H(\nabla u)$ and $b=\frac{g'(u)H(\nabla v)^{p-1}}{pf(v)}$ in (2.2), we get

$$\frac{g'(u)H(\nabla v)^{p-1}H(\nabla u)}{pf(v)} \leq \frac{H(\nabla u)^p}{p} + \frac{1}{q} \left(\frac{g'(u)H(\nabla v)^{p-1}}{pf(v)}\right)^q,$$

which implies (I) ≥ 0 . By using (1.4), we obtain (II) ≥ 0 . To show (III) ≥ 0 , let us rewrite

ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 11

$$(III) = H(\nabla u)H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right)^{p-1} - \left(\nabla u, H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right)^{1/p-1}\nabla v\right)\right).$$

$$-\left(\nabla u, H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right)^{p-1}\nabla_{\xi}H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right)\right).$$

$$\text{Take } \xi = \nabla u, \ x = H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right)^{p-1}\nabla_{\xi}H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right) \text{ in (2.1), we obtain }$$

$$\left\langle H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right)^{p-1}\nabla_{\xi}H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right), \nabla u\right\rangle \leq$$

$$\leq H(\nabla u)H_0\left(H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right)^{p-1}\nabla_{\xi}H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right)\right) =$$

$$= H(\nabla u)H\left(\left(\frac{g'(u)}{f(v)}\right)^{1/p-1}\nabla v\right)^{p-1} =$$

$$= \frac{g'(u)}{f(v)}H(\nabla u)H(\nabla v)^{p-1} \geq 0.$$

The equality in (I) holds if and only if

$$\begin{split} H(\nabla u)^p &= \left(\frac{g'(u)H(\nabla v)^{p-1}}{pf(v)}\right)^q = \left(\frac{g'(u)}{pf(v)}\right)^q H(\nabla v)^p, \\ H(\nabla u) &= H\left(\left(\frac{g'(u)}{pf(v)}\right)^{1/p-1} \nabla v\right) \quad \text{a.e. in} \quad \Omega. \end{split}$$

If $\left(\frac{g'(u)}{pf(v)}\right)^{1/p-1} \nabla v \neq 0$ for some $x_0 \in S := \{x \in \Omega : R(u,v) = 0\}$, then

$$(I) = H(\nabla u)^p + (p-1) \left(\frac{g'(u)}{pf(v)}\right)^q H(\nabla v)^p - \frac{g'(u)}{f(v)} H(\nabla v)^{p-1} H(\nabla u) =$$

$$= H(\nabla u)^p + (p-1) H\left(\left(\frac{g'(u)}{pf(v)}\right)^{1/p-1} \nabla v\right)^p -$$

$$- p\left\langle \nabla u, H\left(\left(\frac{g'(u)}{pf(v)}\right)^{1/p-1} \nabla v\right)^{p-1} \nabla_{\xi} H\left(\left(\frac{g'(u)}{pf(v)}\right)^{1/p-1} \nabla v\right)\right\rangle.$$

When (I) = 0, by Lemma 2.1,

$$\nabla u = \left(\frac{g'(u)}{pf(v)}\right)^{1/p-1} \nabla v.$$

If $\left(\frac{g'(u)}{pf(v)}\right)^{1/p-1} \nabla v = 0$ for some subset S_0 of S, then $\nabla u = 0$ a.e. in S_0 which implies $\nabla u = \left(\frac{g'(u)}{pf(v)}\right)^{1/p-1} \nabla v$.

Theorem 1.5 is proved.

4. Applications of Theorem 1.5. In this section, we use Theorem 1.5 to prove some qualitative result. We assume that Ω is a smooth and bounded domain in \mathbb{R}^n and the functions f and g satisfy assumption of Theorem 1.5. First, we prove a Hardy-type inequality.

Theorem 4.1 (Hardy-type inequality). Let Ω be a bounded domain in \mathbb{R}^n and $v \in C_c^{\infty}(\Omega)$ be such that

$$-\Delta_{H,p}v \ge \lambda k(x)f(v), \quad v > 0 \quad in \qquad \Omega$$

for some $\lambda > 0$ and nonnegative function $k \in L^{\infty}(\Omega)$. Then, for any $u \in C_c^{\infty}(\Omega)$, $u \geq 0$ and $g(u) \in C_c^{\infty}(\Omega)$,

$$\int\limits_{\Omega} H(\nabla u)^p dx \ge \lambda \int\limits_{\Omega} k(x)g(u)dx.$$

Proof. Take $\phi \in C_c^{\infty}(\Omega), \ \phi > 0$. By Theorem 1.5, we have

$$0 \leq \int_{\Omega} L(\phi, v) \, dx =$$

$$= \int_{\Omega} R(\phi, v) \, dx = \int_{\Omega} H(\nabla \phi)^p dx - \Delta \left(\frac{g(\phi)}{f(v)} \right) H(\nabla v)^{p-1} \nabla_{\xi} H(\nabla v) dx =$$

$$= \int_{\Omega} H(\nabla \phi)^p dx + \int_{\Omega} \frac{g(\phi)}{f(v)} \Delta_{H,p} v \, dx \leq$$

$$\leq \int_{\Omega} H(\nabla \phi)^p dx - \lambda \int_{\Omega} g(\phi) k(x) \, dx,$$

and letting $\phi \to u$, we get

$$\int\limits_{\Omega} H(\nabla u)^p dx \ge \lambda \int\limits_{\Omega} k(x)g(u)dx.$$

Theorem 4.1 is proved.

Next, we prove a comparison result.

Theorem 4.2. Let $k_1(x)$ and $k_2(x)$ be two continuous functions such that $k_1(x) < k_2(x)$ on a bounded domain $\Omega \subset \mathbb{R}^n$. If there exists a function $u \in C^2(\Omega)$ satisfying

$$\begin{split} -\Delta_{H,p} u &= \frac{k_1(x)g(u)}{u} & \text{in} \quad \Omega, \\ u &> 0, \, g(u) > 0 & \text{in} \quad \Omega, \\ u &= 0 = g(u) & \text{on} \quad \partial \Omega, \end{split} \tag{4.1}$$

ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 11

then any nontrivial solution v to the equation

$$-\Delta_{H,p}v = k_2(x)f(v) \quad \text{in} \quad \Omega \tag{4.2}$$

must change sign.

Proof. Assume that v does not change sign and $\varepsilon > 0$. Since g(u) = 0 on $\partial\Omega$, $\frac{g(u)}{f(v) + \varepsilon} \in W_0^{1,p}(\Omega)$. By Theorem 1.5,

$$0 \leq \int_{\Omega} L(u, v) dx = \int_{\Omega} R(u, v) dx =$$

$$= \int_{\Omega} H(\nabla u)^{p} dx - \int_{\Omega} \left\langle \nabla \left(\frac{g(u)}{f(v) + \varepsilon} \right), H(\nabla v)^{p-1} \nabla_{\xi} (\nabla v) \right\rangle dx =$$

$$= \int_{\Omega} H(\nabla u)^{p} dx + \int_{\Omega} \frac{g(u)}{f(v) + \varepsilon} \Delta_{H,p} v dx.$$

As $\varepsilon \to 0$, we obtain

$$\int_{\Omega} H(\nabla u)^p dx + \int_{\Omega} \frac{g(u)}{f(v)} \Delta_{H,p} v dx \ge 0.$$
(4.3)

On using (4.1) and (4.2) in (4.3), we have

$$\int\limits_{\Omega} (k_1(x) - k_2(x))g(u)dx \ge 0,$$

which is a contradiction because $k_1(x) < k_2(x)$ and g(u) > 0.

Theorem 4.2 is proved.

Finally, we establish a qualitative result concerning a system of equations involving Finsler p-Laplacian.

Theorem 4.3. Let Ω be a bounded domain in \mathbb{R}^n and $(u,v) \in C^2(\Omega) \times C^2(\Omega)$ be a positive solution to the elliptic system

$$\begin{split} -\Delta_{H,p} u &= f(v) \quad \text{in} \quad \Omega, \\ -\Delta_{H,p} v &= \frac{(f(v))^2 u}{g(u)} \quad \text{in} \quad \Omega, \\ u &> 0, v > 0, \ g(u), f(v) > 0 \quad \text{in} \quad \Omega, \\ u &= 0 = g(u) \quad \text{on} \quad \partial \Omega. \end{split}$$

Then
$$\nabla u = \left(\frac{g'(u)}{pf(v)}\right)^{1/p-1} \nabla v$$
.

Proof. For any $\phi_1, \phi_2 \in W_0^{1,p}(\Omega)$, we get

$$\int_{\Omega} H(\nabla u)^{p-1} \nabla_{\xi} H(\nabla u) \nabla \phi_1 dx = \int_{\Omega} f(v) \phi_1 dx,$$

$$\int_{\Omega} H(\nabla v)^{p-1} \nabla_{\xi} H(\nabla v) \nabla \phi_2 dx = \int_{\Omega} \frac{(f(v))^2 u}{g(u)} \phi_2 dx.$$

Let $\varepsilon > 0$. Since g(u) = 0 on $\partial \Omega$, $\frac{g(u)}{f(v) + \varepsilon} \in W_0^{1,p}(\Omega)$. On choosing $\phi_1 = u$, $\phi_2 = \frac{g(u)}{f(v) + \varepsilon}$, we obtain

$$\int_{\Omega} H(\nabla u)^{p-1} \nabla_{\xi} H(\nabla u) \nabla u dx = \int_{\Omega} f(v) u dx, \tag{4.4}$$

$$\int_{\Omega} H(\nabla v)^{p-1} \nabla_{\xi} H(\nabla v) \nabla \left(\frac{g(u)}{f(v) + \varepsilon} \right) dx = \int_{\Omega} u f(v) dx. \tag{4.5}$$

On using (4.4) and (4.5), we have

$$\int_{\Omega} H(\nabla v)^{p-1} \nabla_{\xi} H(\nabla v) \nabla \left(\frac{g(u)}{f(v) + \varepsilon} \right) dx = \int_{\Omega} u f(v) dx =$$

$$= \int_{\Omega} H(\nabla u)^{p-1} \nabla_{\xi} H(\nabla u) \nabla u dx =$$

$$= \int_{\Omega} H(\nabla u)^{p} dx.$$

As $\varepsilon \to 0$, we obtain

$$\int_{\Omega} L(u,v)dx = \int_{\Omega} R(u,v)dx = 0$$

and, by Theorem 1.5, $\nabla u = \left(\frac{g'(u)}{f(v)}\right)^{1/p-1}$ a.e. in Ω . Theorem 4.3 is proved.

References

- 1. W. Allegretto, *Positive solutions and spectral properties of weakly coupled elliptic systems*, J. Math. Anal. and Appl., 120, № 2, 723 729 (1986).
- 2. W. Allegretto, Sturmian theorems for second order systems, Proc. Amer. Math. Soc., 94, № 2, 291 296 (1985).
- 3. W. Allegretto, Y. X.Huang, *A Picone's identity for the p-Laplacian and applications*, Nonlinear Anal., 32, № 7, 819–830 (1998).
- 4. K. Bal, Generalized Picone's identity and its applications, Electron. J. Different. Equat., 243, 1-6 (2013).
- 5. K. Bal, P. Garain, I. Mandal, *Some qualitative properties of Finsler p-Laplacian*, Indag. Math., **28**, 1258–1264 (2017).

6. M. Belloni, V. Ferone, B. Kawohl, *Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators*, Z. angew. Math. und Phys., **54**, 771 – 783 (2003).

- 7. G. Bognár, O. Došlý, *Picone-type identity for pseudo p-Laplacian with variable power*, Electron. J. Different. Equat., 174, 1–8 (2012).
- 8. F. Della Pietra, N. Gavitone, *Anisotropic elliptic problems involving Hardy-type potentials*, J. Math. Anal. and Appl., 397, 800 813 (2013).
- 9. F. Della Pietra, N. Gavitone, *Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators*, Math. Nachr., **287**, № 2-3, 194–209 (2014).
- 10. F. Della Pietra, N. Gavitone, Faber-Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions, Potential Anal., 41, 1147–1166 (2014).
- 11. G. Dwivedi, J. Tyagi, *Remarks on the qualitative questions for biharmonic operators*, Taiwan. J. Math., 19, № 6, 1743 1758 (2015).
- 12. G. Dwivedi, J. Tyagi, *Picone's identity for biharmonic operators on Heisenberg group and its applications*, Nonlinear Different. Equat. and Appl., 23, № 2, 1–26 (2016).
- 13. G. Dwivedi, J. Tyagi, *A note on the Caccioppoli inequality for biharmonic operators*, Mediterr. J. Math., 13, № 4, 1823 1828 (2016).
- 14. G. Dwivedi, Picone's identity for p-biharmonic operator and its applications, arXiv:1503.05535 (2015).
- 15. L. C. Evans, Partial differential equations, Grad. Stud. Math., 19 (2010).
- 16. T. Feng, A new nonlinear Picone identity and applications, Math. Appl., 30, № 2, 278-283 (2017).
- 17. T. Feng, A generalized nonlinear Picone identity for the p-biharmonic operator and its applications, J. Inequal. and Appl., 2019, Article 56 (2019).
- 18. V. Ferone, B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137, № 1, 247-253 (2009).
- 19. J. Jaroš, Caccioppoli estimates through an anisotropic Picone's idenity, Proc. Amer. Math. Soc., 143, 1137-1144 (2015).
- 20. J. Jaroš, *The higher-order Picone identity and comparison of half-linear differential equations of even order*, Nonlinear Anal., **74**, № 18, 7513 7518 (2011).
- 21. A. Manes, A. M. Micheletti, *Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine*, Boll. Unione Mat. Ital., 7, 285–301 (1973).
- 22. A. Mercaldo, M. Sano, F. Takahashi, Finsler Hardy inequalities, Math. Nachr., 293, № 12, 2370 2398 (2020).
- 23. M. Picone, Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo-ordine, Atti Accad. Naz. Lincei Rend., 20, 213–219 (1911).
- 24. A. Tiryaki, Caccioppoli-type estimates for a class of nonlinear differential operators, Ukr. Math. J., 70, № 12, 1649–1659 (2019).
- 25. J. Tyagi, A nonlinear Picone's identity and applications, Appl. Math. Lett., 26, 624-626 (2013).
- 26. G. Wang, C. Xia, *An optimal anisotropic Poincaré inequality for convex domains*, Pacif. J. Math., **258**, № 2, 305 326 (2012).
- 27. G. Wang, C. Xia, *Blow-up analysis of a Finsler-Liouville equation in two dimensions*, J. Different. Equat., 252, 1668-1700 (2012).
- 28. N. Yoshida, *Picone identities for half-linear elliptic operators with p(x)-Laplacians and applications to Sturmian comparison theory*, Nonlinear Anal., **74**, № 16, 5631 5642 (2011).
- 29. C. Zhou, C. Zhou, Moser-Trudinger inequality involving the anisotropic Dirichlet norm $\left(\int_{\Omega} F^{N}(\nabla u) dx\right)^{\frac{1}{N}}$ on $W_{0}^{1,N}(\Omega)$, J. Funct. Anal., 276, 2901 2935 (2019).

Received 28.08.19, after revision — 27.04.21