DOI: 10.37863/umzh.v73i11.1069

UDC 512.5

S. Askary (Imam-Ali Univ., Tehran, Iran)

CHARACTERIZATION OF SOME FINITE SIMPLE GROUPS BY THE SET OF ORDERS OF VANISHING ELEMENTS AND ORDER ХАРАКТЕРИЗАЦІЯ ДЕЯКИХ СКІНЧЕННИХ ПРОСТИХ ГРУП МНОЖИНОЮ ПОРЯДКІВ ЗНИКАЮЧИХ ЕЛЕМЕНТІВ ТА ПОРЯДКУ

Let G be a finite group. We say that an element g of G is a vanishing element if there exists an irreducible complex character χ of G such that $\chi(g) = 0$. Ghasemabadi, Iranmanesh, Mavadatpour (2015), present the following conjecture: Let G be a finite group and M a finite non-Abelian simple group such that Vo(G) = Vo(M) and |G| = |M|. Then $G \cong M$. We answer in affirmative this conjecture for $M = {}^{2}D_{r+1}(2)$, where $r = 2^{n} - 1 \ge 3$ and either $2^{r} + 1$ or $2^{r+1} + 1$ is a prime number and $M = {}^{2}D_{r}(3)$, where $r = 2^{n} + 1 \ge 5$ and either $(3^{r-1} + 1)/2$ or $(3^{r} + 1)/4$ is prime.

Нехай G — скінченна група. Елемент $g \in G$ є зникаючим елементом, якщо існує незвідний комплексний характер $\chi \in G$ такий, що $\chi(g) = 0$. Гасемабаді, Іранманеш та Мавадатпур (2015) запропонували гіпотезу: якщо G — скінченна група, а M — скінченна неабелева проста група, для яких Vo(G) = Vo(M) і |G| = |M|, то $G \cong M$. Ми доводимо цю гіпотезу для $M = {}^{2}D_{r+1}(2)$, де $r = 2^{n} - 1 \ge 3$, якщо або $2^{r} + 1$, або $2^{r+1} + 1$ є простим числом, і для $M = {}^{2}D_{r}(3)$, де $r = 2^{n} + 1 \ge 5$, якщо або $(3^{r-1} + 1)/2$, або $(3^{r} + 1)/4$ є простим.

1. Introduction. Let G be a finite group. It is well-known that the set of values $cd(G) = \{\chi(1) : \chi \in Irr(G)\}$ has a strong influence on the group structure of G, where Irr(G) denotes the set of irreducible complex characters of G. We say that an element g of G is a vanishing element if there exists an irreducible complex character χ of G such that $\chi(g) = 0$. Denote Van(G) the set $\{g \in G : \chi(g) = 0 \text{ for some } \chi \in Irr(G)\}$, Vo(G) the set $\{o(g) : g \in Van(G)\}$ consisting of the orders of the elements in Van(G).

In [16], it is shown that if G is a finite group such that $Vo(G) = Vo(A_5)$, then $G \cong A_5$. In [17] it is proved that if G is a finite group such that $Vo(G) = Vo(Sz(2^{2m+1}))$, where $m \ge 1$, then $G \cong Sz(2^{2m+1})$. But not all finite simple groups are characterizable by the set of orders of their vanishing elements. For example, Vo(PSL(3,5)) = Vo(Aut(PSL(3,5))), but $PSL(3,5) \cong Aut(PSL(3,5))$. The following conjecture is one of the important problem:

Conjecture. Let G be a finite group and M a finite non-Abelian simple group such that Vo(G) = Vo(M) and |G| = |M|. Then $G \cong M$. The above conjecture was proved for simple groups PSL(2,q), where $q \in \{5,7,8,9,17\}$, PSL(3,4), A_7 , Sz(8) and Sz(32). Then in [9], it is proved that sporadic simple groups, alternating groups, projective special linear groups PSL(2,p), where p is an odd prime, and finite simple K_n -groups where $n \in \{3,4\}$, satisfying this conjecture. Now, we prove this conjecture for some finite simple groups as follows:

Theorem A. If G is a finite group such that $Vo(G) = Vo(^2D_{r+1}(2))$ and $|G| = |^2D_{r+1}(2)|$, where $r = 2^n - 1 \ge 3$ and either $2^r + 1$ or $2^{r+1} + 1$ is prime, then $G \cong {}^2D_{r+1}(2)$.

Theorem B. If G is a finite group such that $Vo(G) = Vo({}^{2}D_{r}(3))$ and $|G| = |{}^{2}D_{r}(3)|$, where $r = 2^{n} + 1 \ge 5$ and either $(3^{r-1} + 1)/2$ or $(3^{r} + 1)/4$ is prime, then $G \cong {}^{2}D_{r}(3)$.

© S. ASKARY, 2021 ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 11 Let X be a finite set of positive integers. The prime graph $\Pi(X)$ is a graph whose vertices are the prime divisors of elements of X divisable by pq. For a finite group G, we denote by $\omega(G)$ the set of element orders of G, and by $\pi(G)$ the set of prime divisors of |G|. The graph $\Pi(\omega(G))$ is denoted by GK(G) and is called the Gruenberg–Kegel graph of G. We denote by t(G) the number of connected components of GK(G) and by $\pi_i(G), i = 1, 2, \ldots, t(G)$, the vertex set of the *i*th connected components of GK(G). If $2 \in \pi(G)$, we always assume that $2 \in \pi_1(G)$. The prime graph $\Pi(Vo(G))$ is denoted by $\Gamma(G)$ and is called the vanishing prime graph of G. Obviously the vanishing prime graph of G is a subgraph of Gruenberg–Kegel graph of G.

Throughout this paper, we denote by $\pi(n)$ the set of prime divisors of integer n. All further notation can be found in [4], for instance.

2. Preliminaries. A 2-Frobenius group is a group G which has a normal series $1 \leq H \leq K \leq G$, where K and G/H are Frobenius groups with kernels H and K/H, respectively. Also, we know that 2-Frobenius groups are solvable.

Definition 2.1 [18]. Let a and n be integers greater than 1. Then a Zsigmondy prime of $a^n - 1$ is a prime l such that $l \mid (a^n - 1)$ but $l \nmid (a^i - 1)$ for $1 \le i < n$.

Lemma 2.1 [18]. Let a and n be integers greater than 1. Then there exists a Zsigmondy prime of $a^n - 1$, unless (a, n) = (2, 6) or n = 2 and $a = 2^s - 1$ for some natural number s.

Remark 2.1. If l is a Zsigmondy prime of $a^n - 1$, then Fermat's little theorem shows that $n \mid l-1$. Put

 $Z_n(a) = \{l : l \text{ is a Zsigmondy prime of } a^n - 1\}.$

If $r \in Z_n(a)$ and $r \mid a^m - 1$, then we can see at once that $n \mid m$.

Lemma 2.2 [3]. Let G be a Frobenius group of even order with kernel K and complement H. Then t(G) = 2, the prime graph components of G are $\pi(H)$ and $\pi(K)$ and the following assertions hold:

(1) K is nilpotent;

(2) $|K| \equiv 1 \pmod{|H|}$.

Lemma 2.3 [3]. Let G be a 2-Frobenius group. Then:

(a) $t(G) = 2, \ \pi_1 = \pi(G/K) \cup \pi(H) \ and \ \pi_2 = \pi(K/H);$

(b) G/K and K/H are cyclic, $|G/K| \mid (|K/H| - 1)$ and $G/K \leq \operatorname{Aut}(K/H)$.

Lemma 2.4 [15]. If G is a finite group such that $t(G) \ge 2$, then G has one of the following structures:

(a) G is a Frobenius group or 2-Frobenius group;

(b) G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(H) \cup \pi(G/K) \subseteq \pi_1$ and K/H is a non-Abelian simple group. In particular, H is nilpotent, $G/K \leq \text{Out}(K/H)$ and the odd order components of G are the odd order components of K/H.

Lemma 2.5 [7, 8]. (i) If G is a finite non-Abelian simple group except A_7 , then $GK(G) = \Gamma(G)$. (ii) If G is a solvable group, then $\Gamma(G)$ has at most 2 connected components.

Lemma 2.6 [7]. Let G be a finite nonsolvable group. If $\Gamma(G)$ is disconnected. Then G has a unique non-Abelian composition factor S, and t(S) is greater than or equal to the number of connected components of $\Gamma(G)$, unless G is isomorphic to A_7 .

Lemma 2.7 [7]. Let G be a group and K a nilpotent normal subgroup of G. If $K \cap Van(G) \neq 0$, then there exists $g \in K \cap Van(G)$ whose order is divisable by every prime in $\pi(K)$.

The following lemma is an easy consequence of [12] (Corollary 22.26).

Lemma 2.8. If $\chi \in Irr(G)$ vanishes on a *p*-element for some prime *p*, then $p \mid \chi(1)$.

Let p be a prime number. A character $\chi \in Irr(G)$ is said to be of p defect zero, if $p \nmid |G|/\chi(1)$. Also, if $\chi \in Irr(G)$ is of p defect zero, then for every element $g \in G$ such that $p \mid o(g)$, we have $\chi(g) = 0$ [11] (Theorem 8.17).

Lemma 2.9 [6]. The equation $p^m - q^n = 1$, where p and q are primes and m, n > 1 has only solution, namely, $3^2 - 2^3 = 1$.

Lemma 2.10 [6]. With the exceptions of the relations $(239)^2 - 2(13)^4 = -1$ and $3^5 - 2(11)^2 = 1$ every solution of the equation

$$p^m-2q^n=\pm 1, \quad p,q \ \text{prime}, \quad m,n>1,$$

has exponents m = n = 2; i.e., it comes from a unit $p - q \cdot 2^{1/2}$ of the quadratic field $\mathbb{Q}(2^{1/2})$ for which the coefficients p and q are primes.

3. Proofs of the main results. Proof of Theorem A. By the assumption $Vo(G) = Vo(^2D_{r+1}(2))$, it is obvious that $\Gamma(G) = \Gamma(^2D_{r+1}(2))$. By Lemma 2.6, we know that $\Gamma(^2D_{r+1}(2)) = GK(^2D_{r+1}(2))$ has 3 connected components including an isolated vertex p, where $p \in \{2^r + 1, 2^{r+1} + 1\}$. Also, note that

$$|G| = 2^{r(r+1)}(2^r - 1)(2^r + 1)(2^{r+1} + 1)\prod_{i=1}^{r-1}(2^{2i} - 1)$$

Since $p \in Vo({}^{2}D_{r+1}(2))$ and $Vo(G) = Vo({}^{2}D_{r+1}(2))$, so $p \in Vo(G)$. Thus there exist an element $g \in G$ and irreducible character $\chi \in Irr(G)$ such that o(g) = p and $\chi(g) = 0$. So $p \mid \chi(1)$ and since $|G|_{p} = p$, we conclude that $p \nmid |G|/\chi(1)$. Therefore, χ is a *p*-defect zero, and, hence, for every element $h \in G$ such that $p \mid o(h)$, we have $\chi(h) = 0$. So, by the fact p is an isolated vertex in $\Gamma(G)$, we conclude that p is an isolated vertex in GK(G). Hence, $t(G) \geq 2$.

Since $\Gamma(G)$ has three connected components, Lemma 2.6 implies that G is not a solvable group and consequently G is not a 2-Frobenius group. We also claim that G is not a Frobenius group. Suppose that G is a Frobenius group with kernel K and complement H. So |G| = |H||K| and $|H| \mid |K| - 1$. Lemma 2.2 implies that GK(G) has two connected components $\pi(H)$ and $\pi(K)$, and since |H| < |K|, it follows that |H| = p and |K| = |G|/p. In both cases $p = 2^r + 1$ and $p = 2^{r+1} + 1$, one can get a contradiction by the fact that $|H| \mid |K| - 1$. Therefore G is not a Frobenius group. So, by Lemma 2.4, G has a normal $1 \leq H \leq K \leq G$ such that $\pi(H) \cup \pi(G/K) \subseteq \pi_1$ and K/His a non-Abelian simple group and $G/K \leq Aut(K/H)$. By Lemma 2.6, we have $t(K/H) \geq 3$. In both cases $p = 2^r + 1$ and $p = 2^{r+1} + 1$, we use the classification of finite non-Abelian simple groups with more than two Gruenberg–Kegel graph connected components to prove that K/H is isomorphic to ${}^2D_{r+1}(2)$.

Case 1. First suppose that $p = 2^r + 1$.

Step 1. K/H is not an sporadic simple group.

Suppose that K/H is an sporadic simple group. Then $p = 2^r + 1 \in \{5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71\}$. If $K/H \cong Fi_{22}$, then $p = 2^r + 1 = 17, 23$ or 29. The only possibility is r = 4, but $r = 2^n - 1 \ge 3$, which is impossible. For other sporadic simple groups one get a contradiction similarly.

Step 2. K/H is not an alternating group.

Let $K/H \cong A_{p'}$, where p' and p'-2 are primes. If $p'-2 = p = 2^r+1$, then $p' = 2^r+3$ is a prime number, which is impossible. Let $p' = p = 2^r + 1$ and p' > 7. Since $p' - 7 = 2(2^{r-1} - 3) | |K/H|$, we have $2^{r-1} - 3 | |G|$, which is impossible. If p' = 7, then $p' = 2^r + 1$, which is impossible. For p' = 5, we have $2^r + 1 = 5$ and hence r = 2, but $r = 2^n - 1 \ge 3$, which is a contradiction.

Step 3. K/H is not a simple group of lie type, except ${}^{2}D_{r+1}(2)$.

If K/H is isomorphic to ${}^{2}A_{5}(2)$, $E_{7}(2)$, $E_{7}(3)$, $A_{2}(4)$ or ${}^{2}E_{6}(2)$, then we easily get a contradiction similar to sporadic simple groups.

a) Let $K/H \cong A_1(q')$, where $q' = 2^m > 2$. Therefore q' - 1 = p or q' + 1 = p. If q' - 1 = p = q' = 1 $= 2^r + 1$, then $2^m - 2^r = 2$. Since $m \ge 2$ and $r \ge 3$, we get a contradiction. So $q' + 1 = p = 2^r + 1$ and, hence, m = r and $|K/H| = q'(q'-1)(q'+1) = 2^r(2^r-1)(2^r+1)$. On the other hand, $G/K \leq Out(K/H)$, which implies that |G/K| | r. Therefore, $2^{r+1}(2^{r+1}+1) \prod_{i=1}^{r-1} (2^{2i}-1) | |H|$. By considering $\Gamma(G)$ we conclude that there exist $g \in G$ and $\chi \in Irr(G)$ such that $\pi(o(g)) \subseteq C = (2^{r+1}+1) = 1$. $\subseteq \pi(2^{r+1}+1)$ and $\chi(g) = 0$. Since $\pi(o(g)) \subseteq \pi(2^{r+1}+1), (2^{r+1}+1, 2^r+1) = 1$ and $H \leq G$, we conclude that $g \in H$. Therefore, H is a nilpotent normal subgroup of G such that $H \cap Van(G) \neq \phi$. Now, Lemma 2.7 implies that there exist a vanishing element whose order is divisible by all prime divisors of |H|. So all prime divisors of |H| are adjacent in $\Gamma(G)$, which is a contradiction by Table 9 of [14].

b) Let $K/H \cong A_1(q')$, where $3 < q' \equiv \varepsilon \pmod{4}$ for $\varepsilon = \pm 1$. Hence $q' = 2^r + 1 = p$ or $(q' + \varepsilon)/2 = 2^r + 1 = p$. First let $(q' + \varepsilon)/2 = 2^r + 1$. If $\varepsilon = 1$, then $q' - 2^{r+1} = 1$, which is a contradiction with Lemma 2.9.

If $\varepsilon = -1$, then $q' \equiv -1 \pmod{4}$. Since $4 \mid (q'+1)$, we can conclude that $q' = u^{\alpha}$, where u is odd prime. Thus $p \in Z_{\alpha}(u)$ and hence by Remark 2.1, $\alpha \mid p-1 = 2^r$. Therefore, $\alpha = 2^t$, which implies that $q = u^{\alpha} \equiv 1 \pmod{4}$, which is a contradiction. Now let $q' = 2^r + 1 = p$. So $q' - 2^r = 1$ and, by Lemma 2.9, q' = 9, which implies that r = 3. Therefore, $|G| = 2^{12} \times 3^4 \times 5 \times 7 \times 17$, $|K/H| = 2^3 \times 3^2 \times 5$ and $|G/K| \mid 2$. Hence, $|H| = 2^9 \times 3^2 \times 7 \times 17$. Now, similar to the above case, we can conclude that all prime divisors of order of H are adjacent in $\Gamma(G)$, which is impossible.

c) Let $K/H \cong E_8(q')$. Then $p = 2^r + 1$ is an element of the set

$$\{q^{\prime 8} \pm q^{\prime 7} \mp q^{\prime 5} - q^{\prime 4} \mp q^{\prime 3} \pm q^{\prime} + 1, q^{\prime 8} - q^{\prime 6} + q^{\prime 4} - q^{\prime 2} + 1, q^{\prime 8} - q^{\prime 4} + 1\}.$$

So, $p = 2^r + 1 < (q'^8 + q'^7 + q'^6 + q'^5 + q'^4 + q'^3 + q'^2 + q' + 1)(q' - 1) = q'^9 - 1 < q'^9 + 1$, which implies that $2^r < q'^9$ and, hence, |K/H| > |G|, which is impossible.

d) Let $K/H \cong Sz(q')$, where $q' = 2^{2m+1} > 2$. If $2^{2m+1} - 1 = p = 2^r + 1$, then $2^{2m+1} - 2^r = 2$, which is impossible. If $2^{2m+1} \pm 2^{m+1} + 1 = 2^r + 1$, then $2^{m+1}(2^m \pm 1) = 2^r$, which is impossible. e) Let $K/H \cong {}^{2}F_{4}(q')$, where $q' = 2^{2m+1} > 2$. Then $2^{2(2m+1)} \pm 2^{3m+2} + 2^{2m+1} \pm 2^{m+1} + 1 = 2^{r} + 1$, which implies that $2^{m+1}(2^{3m+1} \pm 2^{2m+1} + 2^{m} \pm 1) = 2^{r}$, which is a contradiction.

f) Let $K/H \cong {}^{2}G_{2}(q')$ for $q' = 3^{2m+1} > 3$. Therefore $3^{2m+1} \pm 3^{m+1} + 1 = 2^{r} + 1$, and, consequently, $3^{m+1}(3^m \pm 1) = 2^r$, which is impossible. If $K/H \cong G_2(q')$, where $q' \equiv 0 \pmod{3}$ and $K/H \cong {}^{2}B_{2}(q')$, one can get a contradiction similarly.

g) Let K/H be isomorphic to ${}^{2}D'_{p}(3)$, where $p' = 2^{m} + 1$. Then either $(3^{p'} + 1)/4 = 2^{r} + 1$ or $(3^{p'-1}+1)/2 = 2^r + 1$. Now, if $(3^{p'}+1)/4 = 2^r + 1$, then $3^{p'}-3 = 2^{r+2}$, which is impossible. If $(3^{p'-1}+1)/2 = 2^r + 1$, then $3^{p'-1}-2^{r+1} = 1$, which is impossible by Lemma 2.9.

h) Therefore $K/H \cong {}^{2}D_{r'+1}(2)$, where $r' = 2^{m} - 1 \geq 3$. Obviously $m \leq n$. Since $p \in$ $\in \pi(K/H)$, it follows that $p = 2^r + 1$ is a divisor of

$$2^{r'(r'+1)}(2^{r'}-1)(2^{r'}+1)(2^{r'+1}+1)\prod_{i=1}^{r'-1}(2^{2i}-1).$$

Note that p is a primitive prime divisors of $2^r + 1$. Now, if m < n, then $p \nmid |G|$, a contradiction. Therefore m = n and, hence, r' = r. Thus, $K/H \cong {}^{2}D_{r+1}(2)$.

Case 2. Now suppose that $p = 2^{r+1} + 1$.

Step 1. K/H is not an sporadic simple group.

Suppose that K/H is an sporadic simple group. Then $p = 2^{r+1} + 1 \in \{5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71\}$. If $K/H \cong Fi_{23}$, then $p = 2^{r+1} + 1 = 17, 23$ or 29. The only possibility is r = 3. But $|Fi_{23}| \nmid |^2 D_4(2)|$, a contradiction. For other sporadic simple groups, one get a contradiction similarly.

Step 2. K/H is not an alternating group.

Let $K/H \cong A_{p'}$, where p' and p'-2 are primes. If $p' = 2^{r+1} + 1$, then $p'-2 = 2^{r+1} - 1$ is a prime number, which is a contradiction. If $p'-2 = 2^{r+1} + 1$, then $p' = 2^{r+1} + 3$ is a divisor of

$$|G| = 2^{r(r+1)}(2^r - 1)(2^r + 1)(2^{r+1} + 1)\prod_{i=1}^{r-1}(2^{2i} - 1),$$

which is impossible.

Step 3. K/H is not a simple group of lie type, except ${}^{2}D_{r+1}(2)$.

If K/H is isomorphic to ${}^{2}A_{5}(2)$, $E_{7}(2)$, $E_{7}(3)$, $A_{2}(4)$ or ${}^{2}E_{6}(2)$, then we easily get a contradiction similar to sporadic simple groups.

a) Let $K/H \cong A_1(q')$, where $q' = 2^m > 2$. Therefore q' - 1 = p or q' + 1 = p. If $q' - 1 = p = 2^{r+1} + 1$, then $2^m - 2^{r+1} = 2$, which is impossible. If $q' + 1 = p = 2^{r+1} + 1$, then m = r + 1 and $|K/H| = 2^{r+1}(2^{r+1} - 1)(2^{r+1} + 1)$. On the other hand, $G/K \leq Out(K/H)$, which implies that |G/K| | r + 1. Therefore $2(2^r - 1)(2^r + 1) \prod_{i=1}^{r-1} (2^{2i} - 1) | |H|$. By considering $\Gamma(G)$ we conclude that there exist $g \in G$ and $\chi \in Irr(G)$ such that $\pi(o(g)) \subseteq \pi(2^r + 1)$ and $\chi(g) = 0$. Since $\pi(o(g)) \subseteq \pi(2^r + 1)$, $(2^{r+1} + 1, 2^r + 1) = 1$ and $H \leq G$, we conclude that $g \in H$. Therefore, H is a nilpotent normal subgroup of G such that $H \cap Van(G) \neq \phi$. Now, Lemma 2.7 implies that there exist a vanishing element whose order is divisible by all prime divisors of |H|. So all prime divisors of |H| are adjacent in $\Gamma(G)$, which is a contradiction by Table 9 of [14].

b) Let $K/H \cong A_1(q')$, where $3 < q' \equiv \varepsilon \pmod{4}$ for $\varepsilon = \pm 1$. Hence $q' = 2^{r+1} + 1 = p$ or $(q' + \varepsilon)/2 = 2^{r+1} + 1 = p$. First let $(q' + \varepsilon)/2 = 2^{r+1} + 1$. If $\varepsilon = 1$, then $q' - 2^{r+2} = 1$, which is a contradiction with Lemma 2.9.

If $\varepsilon = -1$, then $q' \equiv -1 \pmod{4}$. Since $4 \mid (q'+1)$, we can conclude that $q' = u^{\alpha}$, where u is odd prime. Thus $p \in Z_{\alpha}(u)$ and hence by Remark 2.1, $\alpha \mid p-1 = 2^{r+1}$. Therefore, $\alpha = 2^t$, which implies that $q = u^{\alpha} \equiv 1 \pmod{4}$, which is a contradiction.

Now let $q' = 2^{r+1} + 1 = p$. So $q' - 2^{r+1} = 1$ and, by Lemma 2.9, q' = 9, which implies that r = 2. Since $r = 2^n - 1 \ge 3$, we get a contradiction.

c) Let $K/H \cong E_8(q')$. Then $p = 2^{r+1} + 1$ is an element of the set

$$\{q'^8 \pm q'^7 \mp q'^5 - q'^4 \mp q'^3 \pm q' + 1, q'^8 - q'^6 + q'^4 - q'^2 + 1, q'^8 - q'^4 + 1\}.$$

So $p = 2^{r+1} + 1 < (q'^8 + q'^7 + q'^6 + q'^5 + q'^4 + q'^3 + q'^2 + q' + 1)(q' - 1) = q'^9 - 1 < q'^9 + 1$, which implies that $2^{r+1} < q'^9$ and hence |K/H| > |G|, which is impossible.

d) Let $K/H \cong Sz(q')$, where $q' = 2^{2m+1} > 2$. If $2^{2m+1} - 1 = p = 2^{r+1} + 1$, then $2^{2m+1} - 2^{r+1} = 2$, which is impossible. If $2^{2m+1} \pm 2^{m+1} + 1 = 2^{r+1} + 1$, then $2^{m+1}(2^m \pm 1) = 2^{r+1}$, which is impossible.

e) Let $K/H \cong {}^2F_4(q')$, where $q' = 2^{2m+1} > 2$. Then $2^{2(2m+1)} \pm 2^{3m+2} + 2^{2m+1} \pm 2^{m+1} + 1 = 2^{r+1} + 1$, which implies that $2^{m+1}(2^{3m+1} \pm 2^{2m+1} + 2^m \pm 1) = 2^{r+1}$, which is a contradiction.

f) Let $K/H \cong {}^{2}G_{2}(q')$ for $q' = 3^{2m+1} > 3$. Therefore $3^{2m+1} \pm 3^{m+1} + 1 = 2^{r+1} + 1$, and consequently $3^{m+1}(3^{m} \pm 1) = 2^{r+1}$, which is impossible. If $K/H \cong G_{2}(q')$, where $q' \equiv 0 \pmod{3}$ and $K/H \cong {}^{2}B_{2}(q')$, one can get a contradiction similarly.

g) Let K/H be isomorphic to ${}^{2}D'_{p}(3)$, where $p' = 2^{m} + 1$. Then either $(3^{p'} + 1)/4 = 2^{r+1} + 1$ or $(3^{p'-1} + 1)/2 = 2^{r+1} + 1$. Now, if $(3^{p'} + 1)/4 = 2^{r+1} + 1$, then $3^{p'} - 3 = 2^{r+3}$, which is impossible. If $(3^{p'-1} + 1)/2 = 2^{r+1} + 1$, then $3^{p'-1} - 2^{r+2} = 1$, which is impossible by Lemma 2.9.

h) Therefore $K/H \cong {}^{2}D_{r'+1}(2)$, where $r' = 2^{m} - 1 \ge 3$. Obviously $m \le n$. Since $p \in \pi(K/H)$, it follows that $p = 2^{r+1} + 1$ is a divisor of

$$2^{r'(r'+1)}(2^{r'}-1)(2^{r'}+1)(2^{r'+1}+1)\prod_{i=1}^{r'-1}(2^{2i}-1).$$

Note that p is a primitive prime divisors of $2^{r+1} + 1$. Now, if m < n, then $p \nmid |G|$, a contradiction. Therefore m = n and hence r' = r. Thus $K/H \cong {}^2D_{r+1}(2)$. So in both cases $K/H \cong {}^2D_{r+1}(2)$ and since $|G| = |{}^2D_{r+1}(2)|$, it is obvious that H = 1 and G = K, hence, $G \cong {}^2D_{r+1}(2)$.

Theorem A is proved.

Proof of Theorem B. By the assumption $Vo(G) = Vo(^2D_r(3))$, it is obvious that $\Gamma(G) = \Gamma(^2D_r(3))$. By Lemma 2.6, we know that $\Gamma(^2D_r(3)) = GK(^2D_r(3))$ has 3 connected components including an isolated vertex p, where $p \in \{(3^{r-1} + 1)/2, (3^r + 1)/4\}$. Also, note that

$$|G| = 3^{r(r-1)}(3^r + 1) \prod_{i=1}^{r-1} (3^{2i} - 1).$$

Since $p \in Vo({}^{2}D_{r}(3))$ and $Vo(G) = Vo({}^{2}D_{r}(3))$, so $p \in Vo(G)$. Thus there exist an element $g \in G$ and irreducible character $\chi \in Irr(G)$ such that o(g) = p and $\chi(g) = 0$. So $p \mid \chi(1)$ and since $|G|_{p} = p$, we conclude that $p \nmid |G|/\chi(1)$. Therefore χ is a *p*-defect zero, and hence for every element $h \in G$ such that $p \mid o(h)$, we have $\chi(h) = 0$. So, by the fact p is an isolated vertex in $\Gamma(G)$, we conclude that p is an isolated vertex in GK(G). Hence, $t(G) \geq 2$.

Since $\Gamma(G)$ has three connected components, Lemma 2.6 implies that G is not a solvable group and consequently G is not a 2-Frobenius group. We also claim that G is not a Frobenius group. Suppose that G is a Frobenius group with kernel K and complement H. So |G| = |H||K| and $|H| \mid |K| - 1$. Lemma 2.2 implies that GK(G) has two connected components $\pi(H)$ and $\pi(K)$, and since |H| < |K|, it follows that |H| = p and |K| = |G|/p. In both cases $p = (3^{r-1} + 1)/2$ and $p = (3^r + 1)/4$, one can get a contradiction by the fact that $|H| \mid |K| - 1$. Therefore G is not a Frobenius group. So, by Lemma 2.4, G has a normal $1 \leq H \leq K \leq G$ such that $\pi(H) \cup \pi(G/K) \subseteq$ $\subseteq \pi_1$ and K/H is a non-Abelian simple group and $G/K \leq Aut(K/H)$. By Lemma 2.6, we have $t(K/H) \geq 3$. In both cases $p = (3^{r-1} + 1)/2$ and $p = (3^r + 1)/4$, we use the classification of finite nonabelian simple groups with more than two Gruenberg–Kegel graph connected components to prove that K/H is isomorphic to ${}^2D_r(3)$.

Case 1. First suppose that $p = (3^{r-1} + 1)/2$.

Step 1. K/H is not an sporadic simple group.

Suppose that K/H is an sporadic simple group. Then $p = (3^{r-1}+1)/2 \in \{5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71\}$. If $K/H \cong F_1$, then $p = (3^{r-1}+1)/2 = 41$. The only possibility is r = 5. But $|F_1| \nmid |^2 D_5(3)|$, which is impossible. For other sporadic simple groups one get a contradiction.

Step 2. K/H is not an alternating group.

Let $K/H \cong A_{p'}$, where p' and p'-2 are primes. If $p'-2 = p = (3^{r-1}+1)/2$, then $p' = (3^{r-1}+5)/2$ is a prime number, which is impossible. Let $p' = p = (3^{r-1}+1)/2$, then $p'-2 = (3^{r-1}-3)/2$ is a prime number, which is a contradiction.

Step 3. K/H is not a simple group of lie type, except ${}^{2}D_{r}(3)$.

If K/H is isomorphic to ${}^{2}A_{5}(2)$, $E_{7}(2)$, $E_{7}(3)$, $A_{2}(4)$ or ${}^{2}E_{6}(2)$, then we easily get a contradiction similar to sporadic simple groups.

a) Let $K/H \cong A_1(q')$, where $q' = 2^m > 2$. therefore q' - 1 = p or q' + 1 = p. If $q' - 1 = p = (3^{r-1} + 1)/2$, then $2q' = 3^{r-1} + 3$ and hence $2^{m+1} = 3(3^{r-2} + 1)$, which is impossible. If $q' + 1 = p = (3^{r-1} + 1)/2$, then $3^{r-1} - 2^{m+1} = 1$ and, by Lemma 2.10, r - 1 = 2. Since $r = 2^n + 1 \ge 5$, we get a contradiction.

b) Let $K/H \cong A_1(q')$, where $3 < q' \equiv \varepsilon \pmod{4}$ for $\varepsilon = \pm 1$. Hence $q' = (3^{r-1} + 1)/2 = p$ or $(q' + \varepsilon)/2 = (3^{r-1} + 1)/2 = p$. First let $(q' + \varepsilon)/2 = (3^{r-1} + 1)/2$. If $\varepsilon = 1$, then $q' = 3^{r-1}$ and $|K/H| = 3^{r-1}(3^{r-1} - 1)(3^{r-1} + 1)/2$. On the other hand, $G/K \leq Out(K/H)$, which implies that $|G/K| \mid r - 1$. Therefore $3^r(3^r + 1)/4 \mid |H|$. By considering $\Gamma(G)$ we conclude that there exist $g \in G$ and $\chi \in Irr(G)$ such that $\pi(o(g)) \subseteq \pi((3^r + 1)/4)$ and $\chi(g) = 0$. Since $\pi(o(g)) \subseteq$ $\subseteq \pi((3^r + 1)/4)$, $((3^r + 1)/4, (3^{r-1} + 1)/2) = 1$ and $H \trianglelefteq G$, we conclude that $g \in H$. Therefore H is a nilpotent normal subgroup of G such that $H \cap Van(G) \neq \phi$. Now, Lemma 2.7 implies that there exist a vanishing element whose order is divisible by all prime divisors of |H|. So all prime divisors of |H| are adjacent in $\Gamma(G)$, which is a contradiction by Table 9 of [14].

If $\varepsilon = -1$, then $q' = 3^{r-1} + 2$ and $|K/H| = (3^{r-1} + 1)(3^{r-1} + 2)(3^{r-1} + 3)$. Since $(3^{r-1} + 2) \nmid |G|$, we get a contradiction.

If $q' = (3^{r-1}+1)/2 = p$, then $|K/H| = 3/8((3^{r-1}-1)(3^{r-1}+1)(3^{r-2}+1))$. On the other hand, $G/K \leq Out(K/H)$, which implies that $|G/K| \mid 2$. Now, similar to the above for $\varepsilon = +1$, we can get a contradiction.

c) Let $K/H \cong E_8(q')$. Then $(3^{r-1}+1)/2$ is an element of the set

$$\{q^{\prime 8} \pm q^{\prime 7} \mp q^{\prime 5} - q^{\prime 4} \mp q^{\prime 3} \pm q^{\prime} + 1, q^{\prime 8} - q^{\prime 6} + q^{\prime 4} - q^{\prime 2} + 1, q^{\prime 8} - q^{\prime 4} + 1\}.$$

So $p = (3^{r-1} + 1)/2 < (q'^8 + q'^7 + q'^6 + q'^5 + q'^4 + q'^3 + q'^2 + q' + 1)(q' - 1) = q'^9 - 1 < q'^9 + 1$, which implies that $3^{r-1} < q'^{10}$ and hence |K/H| > |G|, which is impossible.

d) Let $K/H \cong Sz(q')$, where $q' = 2^{2m+1} > 2$. If $2^{2m+1} - 1 = p = (3^{r-1} + 1)/2$, then $2^{2m+2} = 3^r + 3$, which is impossible.

e) Let $K/H \cong {}^{2}F_{4}(q')$, where $q' = 2^{2m+1} > 2$. Then $2^{2(2m+1)} \pm 2^{3m+2} + 2^{2m+1} \pm 2^{m+1} + 1 = (3^{r-1}+1)/2$, which implies that $2^{m+1}(2^{3m+1}\pm 2^{2m+1}+2^m\pm 1) = 3^{r-1}$, which is a contradiction. f) Let $K/H \cong {}^{2}G_{2}(q')$ for $q' = 3^{2m+1} > 3$. Therefore $3^{2m+1} \pm 3^{m+1} + 1 = (3^{r-1}+1)/2$, and consequently $3^{m+1}(3^{m}\pm 1) = (3^{r-1}+1)/2$, which is impossible. If and $K/H \cong {}^{2}B_{2}(q')$, similarly we get a contradiction.

g) Let K/H be isomorphic to ${}^{2}D_{p'+1}(2)$, where $p' = 2^{n} - 1$, $n \ge 2$. Therefore $2^{p'} + 1 = (3^{r-1}+1)/2$ or $2^{p'+1}+1 = (3^{r-1}+1)/2$. If $2^{p'}+1 = (3^{r-1}+1)/2$, then $3^{r-1}-2^{p'+1}=1$ and, by Lemma 2.10, r-1=2. Since $r = 2^{n}+1 \ge 5$, we get a contradiction. For $2^{p'+1}+1 = (3^{r-1}+1)/2$, similar to the above we get a contradiction.

h) Therefore $K/H \cong {}^{2}D_{r'}(3)$, where $r' = 2^{m} + 1 \ge 5$. Obviously $m \le n$. Since $p \in \pi(K/H)$, it follows that $p = (3^{r-1} + 1)/2$ is a divisor of

$$3^{r'(r'-1)}(3^{r'}+1)\prod_{i=1}^{r'-1}(3^{2i}-1).$$

Note that p is a primitive prime divisors of $(3^{r-1}+1)/2$. Now, if m < n, then $p \nmid |G|$, a contradiction. Therefore m = n and hence r' = r. Thus, $K/H \cong {}^2D_r(3)$.

Case 2. If $p = (3^r + 1)/4$, then similar to case 1, we can conclude that $K/H \cong {}^2D_r(3)$ and by the fact that $|G| = |{}^2D_r(3)|$, we have H = 1, G = K and $G \cong {}^2D_r(3)$ as required.

Theorem B is proved.

References

- 1. S. Asgary, N. Ahanjideh, *Characterization of PSL*(3, *q*) by nse, Math. Rep., **19** (**60**), № 4, 425–438 (2017).
- S. Asgary, N. Ahanjideh, nse *Characterization of some finite simple groups*, Sci. Ann. Comput. Sci., 3 (2), 797-806 (2016).
- 3. G. Chen, Further reflections on Thompson's conjecture, J. Algebra, 218, 276-285 (1999).
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, *Atlas of finite groups*, Clarendon Press, New York (1985).
- 5. G. Y. Chen, On Frobenius and 2-Frobenius group, J. Southwest China Normal Univ., 20, № 5, 485-487 (1995).
- 6. P. Crescenzo, A Diophantine equation which arises in the theory of finite groups, Adv. Math., 17, 25-29 (1975).
- S. Dolfi, E. Pacific, L. Sanus, P. Spiga, On the vanishing prime graph of finite groups, J. London Math. Soc., Ser. 2, 82, 167-183 (2010).
- 8. S. Dolfi, E. Pacific, L. Sanus, P. Spiga, On the vanishing prime graph of solvable groups, J. Group Theory, 13, 189-206 (2010).
- M. F. Ghasemabadi, A. Iranmanesh, M. Ahanjideh, A new characterization of some families of finite simple groups, Rend. Semin. Mat. Univ. Padova, 137, 57–74 (2017).
- M. F. Ghasemabadi, A. Iranmanesh, F. Mavadatpur, A new characterization of some finite simple groups, Sib. Math. J., 56, 78-82 (2015).
- 11. I. M. Isaacs, Character theory of finite groups, Pure and Appl. Math., vol. 69, Acad. Press, New York (1976).
- 12. G. James, M. Liebeck, Representations and characters of groups, Cambridge Math. Textbooks (1993).
- 13. H. Shi, G. Y. Chen, Relation between $B_p(3)$ and $C_p(3)$ with their order components where p is an odd prime, J. Appl. Math. Inform., 27, 653–659 (2009).
- A. V. Vasil'ev, E. P. Vdovin, *An adjacency ceriterion for the prime graph of a finite simple group*, Algebra and Logic, 44, 381–406 (2005).
- 15. J. S. Williams, Prime graph components of finite groups, J. Algebra, 69, 487-513 (1981).
- J. Zhang, Z. Li, C. Shao, *Finite groups whose irreducible characters vanish only on elements of prime power order*, Int. Electron. J. Algebra, 9, 114–123 (2011).
- 17. J. Zhang, C. Shao, Z. Shen, A new characterization of Suzuki, s simple groups, J. Algebra and Appl., 16, 1-6 (2017).
- 18. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys., 3, 265-284 (1892).

Received 17.09.19

1450