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CHARACTERIZATION OF SOME FINITE SIMPLE GROUPS
BY THE SET OF ORDERS OF VANISHING ELEMENTS AND ORDER

ХАРАКТЕРИЗАЦIЯ ДЕЯКИХ СКIНЧЕННИХ ПРОСТИХ ГРУП
МНОЖИНОЮ ПОРЯДКIВ ЗНИКАЮЧИХ ЕЛЕМЕНТIВ ТА ПОРЯДКУ

Let G be a finite group. We say that an element g of G is a vanishing element if there exists an irreducible complex
character \chi of G such that \chi (g) = 0. Ghasemabadi, Iranmanesh, Mavadatpour (2015), present the following conjecture:
Let G be a finite group and M a finite non-Abelian simple group such that Vo(G) = Vo(M) and | G| = | M | . Then
G \sim = M . We answer in affirmative this conjecture for M = 2Dr+1(2), where r = 2n  - 1 \geq 3 and either 2r + 1 or
2r+1 + 1 is a prime number and M = 2Dr(3), where r = 2n + 1 \geq 5 and either (3r - 1 + 1)/2 or (3r + 1)/4 is prime.

Нехай G — скiнченна група. Елемент g \in G є зникаючим елементом, якщо iснує незвiдний комплексний характер
\chi \in G такий, що \chi (g) = 0. Гасемабадi, Iранманеш та Мавадатпур (2015) запропонували гiпотезу: якщо G —
скiнченна група, а M — скiнченна неабелева проста група, для яких Vo(G) = Vo(M) i | G| = | M | , то G \sim = M . Ми
доводимо цю гiпотезу для M = 2Dr+1(2), де r = 2n  - 1 \geq 3, якщо або 2r + 1, або 2r+1 + 1 є простим числом, i
для M = 2Dr(3), де r = 2n + 1 \geq 5, якщо або (3r - 1 + 1)/2, або (3r + 1)/4 є простим.

1. Introduction. Let G be a finite group. It is well-known that the set of values cd(G) = \{ \chi (1) :
\chi \in Irr(G)\} has a strong influence on the group structure of G, where Irr(G) denotes the set of
irreducible complex characters of G. We say that an element g of G is a vanishing element if there
exists an irreducible complex character \chi of G such that \chi (g) = 0. Denote Van(G) the set \{ g \in G :
\chi (g) = 0 for some \chi \in Irr(G)\} , Vo(G) the set \{ o(g) : g \in Van(G)\} consisting of the orders of
the elements in Van(G).

In [16], it is shown that if G is a finite group such that Vo(G) = Vo(A5), then G \sim = A5. In
[17] it is proved that if G is a finite group such that Vo(G) = Vo(Sz(22m+1)), where m \geq 1,

then G \sim = Sz(22m+1). But not all finite simple groups are characterizable by the set of orders of
their vanishing elements. For example, Vo(PSL(3, 5)) = Vo(Aut(PSL(3, 5))), but PSL(3, 5) \ncong 
\ncong Aut(PSL(3, 5)). The following conjecture is one of the important problem:

Conjecture. Let G be a finite group and M a finite non-Abelian simple group such that
Vo(G) = Vo(M) and | G| = | M | . Then G \sim = M. The above conjecture was proved for simple
groups PSL(2, q), where q \in \{ 5, 7, 8, 9, 17\} , PSL(3, 4), A7, Sz(8) and Sz(32). Then in [9], it is
proved that sporadic simple groups, alternating groups, projective special linear groups PSL(2, p),

where p is an odd prime, and finite simple Kn-groups where n \in \{ 3, 4\} , satisfying this conjecture.
Now, we prove this conjecture for some finite simple groups as follows:

Theorem A. If G is a finite group such that Vo(G) = Vo(2Dr+1(2)) and | G| = | 2Dr+1(2)| ,
where r = 2n  - 1 \geq 3 and either 2r + 1 or 2r+1 + 1 is prime, then G \sim = 2Dr+1(2).

Theorem B. If G is a finite group such that Vo(G) = Vo(2Dr(3)) and | G| = | 2Dr(3)| , where
r = 2n + 1 \geq 5 and either (3r - 1 + 1)/2 or (3r + 1)/4 is prime, then G \sim = 2Dr(3).
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Let X be a finite set of positive integers. The prime graph \Pi (X) is a graph whose vertices are
the prime divisors of elements of X divisable by pq. For a finite group G, we denote by \omega (G) the
set of element orders of G, and by \pi (G) the set of prime divisors of | G| . The graph \Pi (\omega (G)) is
denoted by GK(G) and is called the Gruenberg – Kegel graph of G. We denote by t(G) the number
of connected components of GK(G) and by \pi i(G), i = 1, 2, . . . , t(G), the vertex set of the ith
connected components of GK(G). If 2 \in \pi (G), we always assume that 2 \in \pi 1(G). The prime
graph \Pi (Vo(G)) is denoted by \Gamma (G) and is called the vanishing prime graph of G. Obviously the
vanishing prime graph of G is a subgraph of Gruenberg – Kegel graph of G.

Throughout this paper, we denote by \pi (n) the set of prime divisors of integer n. All further
notation can be found in [4], for instance.

2. Preliminaries. A 2-Frobenius group is a group G which has a normal series 1\unlhd H\unlhd K\unlhd G,

where K and G/H are Frobenius groups with kernels H and K/H, respectively. Also, we know
that 2-Frobenius groups are solvable.

Definition 2.1 [18]. Let a and n be integers greater than 1. Then a Zsigmondy prime of an  - 1

is a prime l such that l | (an  - 1) but l \nmid (ai  - 1) for 1 \leq i < n.

Lemma 2.1 [18]. Let a and n be integers greater than 1. Then there exists a Zsigmondy prime
of an  - 1, unless (a, n) = (2, 6) or n = 2 and a = 2s  - 1 for some natural number s.

Remark 2.1. If l is a Zsigmondy prime of an - 1, then Fermat’s little theorem shows that n | l - 1.

Put
Zn(a) = \{ l : l is a Zsigmondy prime of an  - 1\} .

If r \in Zn(a) and r | am  - 1, then we can see at once that n | m.

Lemma 2.2 [3]. Let G be a Frobenius group of even order with kernel K and complement H.

Then t(G) = 2, the prime graph components of G are \pi (H) and \pi (K) and the following assertions
hold:

(1) K is nilpotent;
(2) | K| \equiv 1 (mod | H| ).
Lemma 2.3 [3]. Let G be a 2-Frobenius group. Then:
(a) t(G) = 2, \pi 1 = \pi (G/K) \cup \pi (H) and \pi 2 = \pi (K/H);

(b) G/K and K/H are cyclic, | G/K| | (| K/H|  - 1) and G/K \leq \mathrm{A}\mathrm{u}\mathrm{t}(K/H).

Lemma 2.4 [15]. If G is a finite group such that t(G) \geq 2, then G has one of the following
structures:

(a) G is a Frobenius group or 2-Frobenius group;
(b) G has a normal series 1 \unlhd H \unlhd K \unlhd G such that \pi (H) \cup \pi (G/K) \subseteq \pi 1 and K/H is a

non-Abelian simple group. In particular, H is nilpotent, G/K \lesssim \mathrm{O}\mathrm{u}\mathrm{t}(K/H) and the odd order
components of G are the odd order components of K/H.

Lemma 2.5 [7, 8]. (i) If G is a finite non-Abelian simple group except A7, then GK(G)=\Gamma (G).

(ii) If G is a solvable group, then \Gamma (G) has at most 2 connected components.
Lemma 2.6 [7]. Let G be a finite nonsolvable group. If \Gamma (G) is disconnected. Then G has

a unique non-Abelian composition factor S, and t(S) is greater than or equal to the number of
connected components of \Gamma (G), unless G is isomorphic to A7.

Lemma 2.7 [7]. Let G be a group and K a nilpotent normal subgroup of G. If K
\bigcap 
Van(G) \not =

\not = 0, then there exists g \in K
\bigcap 
Van(G) whose order is divisable by every prime in \pi (K).

The following lemma is an easy consequence of [12] (Corollary 22.26).
Lemma 2.8. If \chi \in Irr(G) vanishes on a p-element for some prime p, then p | \chi (1).
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Let p be a prime number. A character \chi \in Irr(G) is said to be of p defect zero, if p \nmid | G| /\chi (1).
Also, if \chi \in Irr(G) is of p defect zero, then for every element g \in G such that p | o(g), we have
\chi (g) = 0 [11] (Theorem 8.17).

Lemma 2.9 [6]. The equation pm  - qn = 1, where p and q are primes and m,n > 1 has only
solution, namely, 32  - 23 = 1.

Lemma 2.10 [6]. With the exceptions of the relations (239)2 - 2(13)4 =  - 1 and 35 - 2(11)2 = 1

every solution of the equation

pm  - 2qn = \pm 1, p, q prime, m, n > 1,

has exponents m = n = 2; i.e., it comes from a unit p  - q.21/2 of the quadratic field \BbbQ (21/2) for
which the coefficients p and q are primes.

3. Proofs of the main results. Proof of Theorem A. By the assumption Vo(G) =

= Vo(2Dr+1(2)), it is obvious that \Gamma (G) = \Gamma (2Dr+1(2)). By Lemma 2.6, we know that
\Gamma (2Dr+1(2)) = GK(2Dr+1(2)) has 3 connected components including an isolated vertex p, where
p \in \{ 2r + 1, 2r+1 + 1\} . Also, note that

| G| = 2r(r+1)(2r  - 1)(2r + 1)(2r+1 + 1)
r - 1\prod 
i=1

(22i  - 1).

Since p \in Vo(2Dr+1(2)) and Vo(G) = Vo(2Dr+1(2)), so p \in Vo(G). Thus there exist an element
g \in G and irreducible character \chi \in Irr(G) such that o(g) = p and \chi (g) = 0. So p | \chi (1) and
since | G| p = p, we conclude that p \nmid | G| /\chi (1). Therefore, \chi is a p-defect zero, and, hence, for
every element h \in G such that p | o(h), we have \chi (h) = 0. So, by the fact p is an isolated vertex
in \Gamma (G), we conclude that p is an isolated vertex in GK(G). Hence, t(G) \geq 2.

Since \Gamma (G) has three connected components, Lemma 2.6 implies that G is not a solvable group
and consequently G is not a 2-Frobenius group. We also claim that G is not a Frobenius group.
Suppose that G is a Frobenius group with kernel K and complement H. So | G| = | H| | K| and
| H| | | K|  - 1. Lemma 2.2 implies that GK(G) has two connected components \pi (H) and \pi (K),

and since | H| < | K| , it follows that | H| = p and | K| = | G| /p. In both cases p = 2r + 1 and
p = 2r+1+1, one can get a contradiction by the fact that | H| | | K|  - 1. Therefore G is not a Frobenius
group. So, by Lemma 2.4, G has a normal 1\unlhd H\unlhd K\unlhd G such that \pi (H)\cup \pi (G/K) \subseteq \pi 1 and K/H

is a non-Abelian simple group and G/K \leq Aut(K/H). By Lemma 2.6, we have t(K/H) \geq 3.

In both cases p = 2r + 1 and p = 2r+1 + 1, we use the classification of finite non-Abelian simple
groups with more than two Gruenberg – Kegel graph connected components to prove that K/H is
isomorphic to 2Dr+1(2).

Case 1. First suppose that p = 2r + 1.

Step 1. K/H is not an sporadic simple group.
Suppose that K/H is an sporadic simple group. Then p = 2r+1 \in \{ 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59, 61, 67, 71\} . If K/H \sim = Fi22, then p = 2r + 1 = 17, 23 or 29. The only possi-
bility is r = 4, but r = 2n  - 1 \geq 3, which is impossible. For other sporadic simple groups one get
a contradiction similarly.

Step 2. K/H is not an alternating group.
Let K/H \sim = Ap\prime , where p\prime and p\prime  - 2 are primes. If p\prime  - 2 = p = 2r+1, then p\prime = 2r+3 is a prime

number, which is impossible. Let p\prime = p = 2r +1 and p\prime > 7. Since p\prime  - 7 = 2(2r - 1  - 3) | | K/H| ,
we have 2r - 1  - 3 | | G| , which is impossible. If p\prime = 7, then p\prime = 2r + 1, which is impossible. For
p\prime = 5, we have 2r + 1 = 5 and hence r = 2, but r = 2n  - 1 \geq 3, which is a contradiction.
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Step 3. K/H is not a simple group of lie type, except 2Dr+1(2).

If K/H is isomorphic to 2A5(2), E7(2), E7(3), A2(4) or 2E6(2), then we easily get a contra-
diction similar to sporadic simple groups.

a) Let K/H \sim = A1(q
\prime ), where q\prime = 2m > 2. Therefore q\prime  - 1 = p or q\prime +1 = p. If q\prime  - 1 = p =

= 2r+1, then 2m - 2r = 2. Since m \geq 2 and r \geq 3, we get a contradiction. So q\prime +1 = p = 2r+1

and, hence, m = r and | K/H| = q\prime (q\prime  - 1)(q\prime + 1) = 2r(2r  - 1)(2r + 1). On the other hand,

G/K \leq Out(K/H), which implies that | G/K| | r. Therefore, 2r+1(2r+1+1)
\prod r - 1

i=1
(22i - 1) | | H| .

By considering \Gamma (G) we conclude that there exist g \in G and \chi \in Irr(G) such that \pi (o(g)) \subseteq 
\subseteq \pi (2r+1+1) and \chi (g) = 0. Since \pi (o(g)) \subseteq \pi (2r+1+1), (2r+1+1, 2r +1) = 1 and H \unlhd G, we
conclude that g \in H. Therefore, H is a nilpotent normal subgroup of G such that H

\bigcap 
Van(G) \not = \phi .

Now, Lemma 2.7 implies that there exist a vanishing element whose order is divisible by all prime
divisors of | H| . So all prime divisors of | H| are adjacent in \Gamma (G), which is a contradiction by Table
9 of [14].

b) Let K/H \sim = A1(q
\prime ), where 3 < q\prime \equiv \varepsilon (\mathrm{m}\mathrm{o}\mathrm{d} 4) for \varepsilon = \pm 1. Hence q\prime = 2r + 1 = p or

(q\prime + \varepsilon )/2 = 2r + 1 = p. First let (q\prime + \varepsilon )/2 = 2r + 1. If \varepsilon = 1, then q\prime  - 2r+1 = 1, which is a
contradiction with Lemma 2.9.

If \varepsilon =  - 1, then q\prime \equiv  - 1(\mathrm{m}\mathrm{o}\mathrm{d} 4). Since 4 | (q\prime + 1), we can conclude that q\prime = u\alpha , where u is
odd prime. Thus p \in Z\alpha (u) and hence by Remark 2.1, \alpha | p  - 1 = 2r. Therefore, \alpha = 2t, which
implies that q = u\alpha \equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} 4), which is a contradiction. Now let q\prime = 2r +1 = p. So q\prime  - 2r = 1

and, by Lemma 2.9, q\prime = 9, which implies that r = 3. Therefore, | G| = 212 \times 34 \times 5 \times 7 \times 17,

| K/H| = 23\times 32\times 5 and | G/K| | 2. Hence, | H| = 29\times 32\times 7\times 17. Now, similar to the above case,
we can conclude that all prime divisors of order of H are adjacent in \Gamma (G), which is impossible.

c) Let K/H \sim = E8(q
\prime ). Then p = 2r + 1 is an element of the set

\{ q\prime 8 \pm q\prime 7 \mp q\prime 5  - q\prime 4 \mp q\prime 3 \pm q\prime + 1, q\prime 8  - q\prime 6 + q\prime 4  - q\prime 2 + 1, q\prime 8  - q\prime 4 + 1\} .

So, p = 2r +1 < (q\prime 8 + q\prime 7 + q\prime 6 + q\prime 5 + q\prime 4 + q\prime 3 + q\prime 2 + q\prime +1)(q\prime  - 1) = q\prime 9  - 1 < q\prime 9 +1, which
implies that 2r < q\prime 9 and, hence, | K/H| > | G| , which is impossible.

d) Let K/H \sim = Sz(q\prime ), where q\prime = 22m+1 > 2. If 22m+1 - 1 = p = 2r+1, then 22m+1 - 2r = 2,

which is impossible. If 22m+1 \pm 2m+1 +1 = 2r +1, then 2m+1(2m \pm 1) = 2r, which is impossible.
e) Let K/H \sim = 2F4(q

\prime ), where q\prime = 22m+1 > 2. Then 22(2m+1)\pm 23m+2+22m+1\pm 2m+1+1 =

= 2r + 1, which implies that 2m+1(23m+1 \pm 22m+1 + 2m \pm 1) = 2r, which is a contradiction.
f) Let K/H \sim = 2G2(q

\prime ) for q\prime = 32m+1 > 3. Therefore 32m+1 \pm 3m+1 + 1 = 2r + 1, and,
consequently, 3m+1(3m \pm 1) = 2r, which is impossible. If K/H \sim = G2(q

\prime ), where q\prime \equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 3)

and K/H \sim = 2B2(q
\prime ), one can get a contradiction similarly.

g) Let K/H be isomorphic to 2D\prime 
p(3), where p\prime = 2m + 1. Then either (3p

\prime 
+ 1)/4 = 2r + 1 or

(3p
\prime  - 1 + 1)/2 = 2r + 1. Now, if (3p

\prime 
+ 1)/4 = 2r + 1, then 3p

\prime  - 3 = 2r+2, which is impossible. If
(3p

\prime  - 1 + 1)/2 = 2r + 1, then 3p
\prime  - 1  - 2r+1 = 1, which is impossible by Lemma 2.9.

h) Therefore K/H \sim = 2Dr\prime +1(2), where r\prime = 2m  - 1 \geq 3. Obviously m \leq n. Since p \in 
\in \pi (K/H), it follows that p = 2r + 1 is a divisor of

2r
\prime (r\prime +1)(2r

\prime  - 1)(2r
\prime 
+ 1)(2r

\prime +1 + 1)

r\prime  - 1\prod 
i=1

(22i  - 1).

Note that p is a primitive prime divisors of 2r + 1. Now, if m < n, then p \nmid | G| , a contradiction.
Therefore m = n and, hence, r\prime = r. Thus, K/H \sim = 2Dr+1(2).
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Case 2. Now suppose that p = 2r+1 + 1.

Step 1. K/H is not an sporadic simple group.
Suppose that K/H is an sporadic simple group. Then p = 2r+1 + 1 \in \{ 5, 7, 11, 13, 17, 19,

23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71\} . If K/H \sim = Fi23, then p = 2r+1+1 = 17, 23 or 29. The
only possibility is r = 3. But | Fi23| \nmid | 2D4(2)| , a contradiction. For other sporadic simple groups,
one get a contradiction similarly.

Step 2. K/H is not an alternating group.
Let K/H \sim = Ap\prime , where p\prime and p\prime  - 2 are primes. If p\prime = 2r+1 + 1, then p\prime  - 2 = 2r+1  - 1 is a

prime number, which is a contradiction. If p\prime  - 2 = 2r+1 + 1, then p\prime = 2r+1 + 3 is a divisor of

| G| = 2r(r+1)(2r  - 1)(2r + 1)(2r+1 + 1)

r - 1\prod 
i=1

(22i  - 1),

which is impossible.
Step 3. K/H is not a simple group of lie type, except 2Dr+1(2).

If K/H is isomorphic to 2A5(2), E7(2), E7(3), A2(4) or 2E6(2), then we easily get a contra-
diction similar to sporadic simple groups.

a) Let K/H \sim = A1(q
\prime ), where q\prime = 2m > 2. Therefore q\prime  - 1 = p or q\prime + 1 = p. If q\prime  - 1 =

= p = 2r+1+1, then 2m - 2r+1 = 2, which is impossible. If q\prime +1 = p = 2r+1+1, then m = r+1

and | K/H| = 2r+1(2r+1  - 1)(2r+1 + 1). On the other hand, G/K \leq Out(K/H), which implies

that | G/K| | r + 1. Therefore 2(2r  - 1)(2r + 1)
\prod r - 1

i=1
(22i  - 1) | | H| . By considering \Gamma (G) we

conclude that there exist g \in G and \chi \in Irr(G) such that \pi (o(g)) \subseteq \pi (2r+1) and \chi (g) = 0. Since
\pi (o(g)) \subseteq \pi (2r + 1), (2r+1 + 1, 2r + 1) = 1 and H \unlhd G, we conclude that g \in H. Therefore, H is
a nilpotent normal subgroup of G such that H

\bigcap 
Van(G) \not = \phi . Now, Lemma 2.7 implies that there

exist a vanishing element whose order is divisible by all prime divisors of | H| . So all prime divisors
of | H| are adjacent in \Gamma (G), which is a contradiction by Table 9 of [14].

b) Let K/H \sim = A1(q
\prime ), where 3 < q\prime \equiv \varepsilon (\mathrm{m}\mathrm{o}\mathrm{d} 4) for \varepsilon = \pm 1. Hence q\prime = 2r+1 + 1 = p or

(q\prime + \varepsilon )/2 = 2r+1 + 1 = p. First let (q\prime + \varepsilon )/2 = 2r+1 + 1. If \varepsilon = 1, then q\prime  - 2r+2 = 1, which is
a contradiction with Lemma 2.9.

If \varepsilon =  - 1, then q\prime \equiv  - 1(\mathrm{m}\mathrm{o}\mathrm{d} 4). Since 4 | (q\prime + 1), we can conclude that q\prime = u\alpha , where u is
odd prime. Thus p \in Z\alpha (u) and hence by Remark 2.1, \alpha | p - 1 = 2r+1. Therefore, \alpha = 2t, which
implies that q = u\alpha \equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} 4), which is a contradiction.

Now let q\prime = 2r+1 + 1 = p. So q\prime  - 2r+1 = 1 and, by Lemma 2.9, q\prime = 9, which implies that
r = 2. Since r = 2n  - 1 \geq 3, we get a contradiction.

c) Let K/H \sim = E8(q
\prime ). Then p = 2r+1 + 1 is an element of the set

\{ q\prime 8 \pm q\prime 7 \mp q\prime 5  - q\prime 4 \mp q\prime 3 \pm q\prime + 1, q\prime 8  - q\prime 6 + q\prime 4  - q\prime 2 + 1, q\prime 8  - q\prime 4 + 1\} .

So p = 2r+1 + 1 < (q\prime 8 + q\prime 7 + q\prime 6 + q\prime 5 + q\prime 4 + q\prime 3 + q\prime 2 + q\prime + 1)(q\prime  - 1) = q\prime 9  - 1 < q\prime 9 + 1,

which implies that 2r+1 < q\prime 9 and hence | K/H| > | G| , which is impossible.
d) Let K/H \sim = Sz(q\prime ), where q\prime = 22m+1 > 2. If 22m+1  - 1 = p = 2r+1 + 1, then 22m+1  - 

 - 2r+1 = 2, which is impossible. If 22m+1 \pm 2m+1 + 1 = 2r+1 + 1, then 2m+1(2m \pm 1) = 2r+1,

which is impossible.
e) Let K/H \sim = 2F4(q

\prime ), where q\prime = 22m+1 > 2. Then 22(2m+1)\pm 23m+2+22m+1\pm 2m+1+1 =

= 2r+1 + 1, which implies that 2m+1(23m+1 \pm 22m+1 + 2m \pm 1) = 2r+1, which is a contradiction.
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f) Let K/H \sim = 2G2(q
\prime ) for q\prime = 32m+1 > 3. Therefore 32m+1 \pm 3m+1 + 1 = 2r+1 + 1, and

consequently 3m+1(3m \pm 1) = 2r+1, which is impossible. If K/H \sim = G2(q
\prime ), where q\prime \equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 3)

and K/H \sim = 2B2(q
\prime ), one can get a contradiction similarly.

g) Let K/H be isomorphic to 2D\prime 
p(3), where p\prime = 2m+1. Then either (3p

\prime 
+1)/4 = 2r+1+1 or

(3p
\prime  - 1+1)/2 = 2r+1+1. Now, if (3p

\prime 
+1)/4 = 2r+1+1, then 3p

\prime  - 3 = 2r+3, which is impossible.
If (3p

\prime  - 1 + 1)/2 = 2r+1 + 1, then 3p
\prime  - 1  - 2r+2 = 1, which is impossible by Lemma 2.9.

h) Therefore K/H \sim = 2Dr\prime +1(2), where r\prime = 2m  - 1 \geq 3. Obviously m \leq n. Since p \in 
\in \pi (K/H), it follows that p = 2r+1 + 1 is a divisor of

2r
\prime (r\prime +1)(2r

\prime  - 1)(2r
\prime 
+ 1)(2r

\prime +1 + 1)
r\prime  - 1\prod 
i=1

(22i  - 1).

Note that p is a primitive prime divisors of 2r+1 + 1. Now, if m < n, then p \nmid | G| , a contradiction.
Therefore m = n and hence r\prime = r. Thus K/H \sim = 2Dr+1(2). So in both cases K/H \sim = 2Dr+1(2)

and since | G| = | 2Dr+1(2)| , it is obvious that H = 1 and G = K, hence, G \sim = 2Dr+1(2).
Theorem A is proved.
Proof of Theorem B. By the assumption Vo(G) = Vo(2Dr(3)), it is obvious that \Gamma (G) =

= \Gamma (2Dr(3)). By Lemma 2.6, we know that \Gamma (2Dr(3)) = GK(2Dr(3)) has 3 connected compo-
nents including an isolated vertex p, where p \in \{ (3r - 1 + 1)/2, (3r + 1)/4\} . Also, note that

| G| = 3r(r - 1)(3r + 1)
r - 1\prod 
i=1

(32i  - 1).

Since p \in Vo(2Dr(3)) and Vo(G) = Vo(2Dr(3)), so p \in Vo(G). Thus there exist an element
g \in G and irreducible character \chi \in Irr(G) such that o(g) = p and \chi (g) = 0. So p | \chi (1) and
since | G| p = p, we conclude that p \nmid | G| /\chi (1). Therefore \chi is a p-defect zero, and hence for every
element h \in G such that p | o(h), we have \chi (h) = 0. So, by the fact p is an isolated vertex in
\Gamma (G), we conclude that p is an isolated vertex in GK(G). Hence, t(G) \geq 2.

Since \Gamma (G) has three connected components, Lemma 2.6 implies that G is not a solvable group
and consequently G is not a 2-Frobenius group. We also claim that G is not a Frobenius group.
Suppose that G is a Frobenius group with kernel K and complement H. So | G| = | H| | K| and
| H| | | K|  - 1. Lemma 2.2 implies that GK(G) has two connected components \pi (H) and \pi (K),

and since | H| < | K| , it follows that | H| = p and | K| = | G| /p. In both cases p = (3r - 1 + 1)/2

and p = (3r + 1)/4, one can get a contradiction by the fact that | H| | | K|  - 1. Therefore G is not a
Frobenius group. So, by Lemma 2.4, G has a normal 1\unlhd H \unlhd K \unlhd G such that \pi (H)\cup \pi (G/K) \subseteq 
\subseteq \pi 1 and K/H is a non-Abelian simple group and G/K \leq Aut(K/H). By Lemma 2.6, we have
t(K/H) \geq 3. In both cases p = (3r - 1 + 1)/2 and p = (3r + 1)/4, we use the classification of
finite nonabelian simple groups with more than two Gruenberg – Kegel graph connected components
to prove that K/H is isomorphic to 2Dr(3).

Case 1. First suppose that p = (3r - 1 + 1)/2.

Step 1. K/H is not an sporadic simple group.
Suppose that K/H is an sporadic simple group. Then p = (3r - 1+1)/2 \in \{ 5, 7, 11, 13, 17, 19, 23,

29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71\} . If K/H \sim = F1, then p = (3r - 1 + 1)/2 = 41. The only pos-
sibility is r = 5. But | F1| \nmid | 2D5(3)| , which is impossible. For other sporadic simple groups one get
a contradiction.
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Step 2. K/H is not an alternating group.

Let K/H \sim = Ap\prime , where p\prime and p\prime  - 2 are primes. If p\prime  - 2 = p = (3r - 1 + 1)/2, then
p\prime = (3r - 1 + 5)/2 is a prime number, which is impossible. Let p\prime = p = (3r - 1 + 1)/2, then
p\prime  - 2 = (3r - 1  - 3)/2 is a prime number, which is a contradiction.

Step 3. K/H is not a simple group of lie type, except 2Dr(3).

If K/H is isomorphic to 2A5(2), E7(2), E7(3), A2(4) or 2E6(2), then we easily get a contra-
diction similar to sporadic simple groups.

a) Let K/H \sim = A1(q
\prime ), where q\prime = 2m > 2. therefore q\prime  - 1 = p or q\prime + 1 = p. If q\prime  - 1 =

= p = (3r - 1 + 1)/2, then 2q\prime = 3r - 1 + 3 and hence 2m+1 = 3(3r - 2 + 1), which is impossible.
If q\prime + 1 = p = (3r - 1 + 1)/2, then 3r - 1  - 2m+1 = 1 and, by Lemma 2.10, r  - 1 = 2. Since
r = 2n + 1 \geq 5, we get a contradiction.

b) Let K/H \sim = A1(q
\prime ), where 3 < q\prime \equiv \varepsilon (\mathrm{m}\mathrm{o}\mathrm{d} 4) for \varepsilon = \pm 1. Hence q\prime = (3r - 1 + 1)/2 = p

or (q\prime + \varepsilon )/2 = (3r - 1 + 1)/2 = p. First let (q\prime + \varepsilon )/2 = (3r - 1 + 1)/2. If \varepsilon = 1, then q\prime = 3r - 1

and | K/H| = 3r - 1(3r - 1  - 1)(3r - 1 + 1)/2. On the other hand, G/K \leq Out(K/H), which implies
that | G/K| | r  - 1. Therefore 3r(3r + 1)/4 | | H| . By considering \Gamma (G) we conclude that there
exist g \in G and \chi \in Irr(G) such that \pi (o(g)) \subseteq \pi ((3r + 1)/4) and \chi (g) = 0. Since \pi (o(g)) \subseteq 
\subseteq \pi ((3r + 1)/4), ((3r + 1)/4, (3r - 1 + 1)/2) = 1 and H \unlhd G, we conclude that g \in H. Therefore
H is a nilpotent normal subgroup of G such that H

\bigcap 
Van(G) \not = \phi . Now, Lemma 2.7 implies that

there exist a vanishing element whose order is divisible by all prime divisors of | H| . So all prime
divisors of | H| are adjacent in \Gamma (G), which is a contradiction by Table 9 of [14].

If \varepsilon =  - 1, then q\prime = 3r - 1+2 and | K/H| = (3r - 1+1)(3r - 1+2)(3r - 1+3). Since (3r - 1+2) \nmid 
\nmid | G| , we get a contradiction.

If q\prime = (3r - 1 + 1)/2 = p, then | K/H| = 3/8
\bigl( 
(3r - 1  - 1)(3r - 1 + 1)(3r - 2 + 1)

\bigr) 
. On the other

hand, G/K \leq Out(K/H), which implies that | G/K| | 2. Now, similar to the above for \varepsilon = +1,

we can get a contradiction.
c) Let K/H \sim = E8(q

\prime ). Then (3r - 1 + 1)/2 is an element of the set

\{ q\prime 8 \pm q\prime 7 \mp q\prime 5  - q\prime 4 \mp q\prime 3 \pm q\prime + 1, q\prime 8  - q\prime 6 + q\prime 4  - q\prime 2 + 1, q\prime 8  - q\prime 4 + 1\} .

So p = (3r - 1 + 1)/2 < (q\prime 8 + q\prime 7 + q\prime 6 + q\prime 5 + q\prime 4 + q\prime 3 + q\prime 2 + q\prime +1)(q\prime  - 1) = q\prime 9  - 1 < q\prime 9 +1,

which implies that 3r - 1 < q\prime 10 and hence | K/H| > | G| , which is impossible.
d) Let K/H \sim = Sz(q\prime ), where q\prime = 22m+1 > 2. If 22m+1  - 1 = p = (3r - 1 + 1)/2, then

22m+2 = 3r + 3, which is impossible.
e) Let K/H \sim = 2F4(q

\prime ), where q\prime = 22m+1 > 2. Then 22(2m+1)\pm 23m+2+22m+1\pm 2m+1+1 =

= (3r - 1+1)/2, which implies that 2m+1(23m+1\pm 22m+1+2m\pm 1) = 3r - 1, which is a contradiction.
f) Let K/H \sim = 2G2(q

\prime ) for q\prime = 32m+1 > 3. Therefore 32m+1 \pm 3m+1 + 1 = (3r - 1 + 1)/2, and
consequently 3m+1(3m\pm 1) = (3r - 1+1)/2, which is impossible. If and K/H \sim = 2B2(q

\prime ), similarly
we get a contradiction.

g) Let K/H be isomorphic to 2Dp\prime +1(2), where p\prime = 2n  - 1, n \geq 2. Therefore 2p
\prime 
+ 1 =

= (3r - 1+1)/2 or 2p
\prime +1+1 = (3r - 1+1)/2. If 2p

\prime 
+1 = (3r - 1+1)/2, then 3r - 1 - 2p

\prime +1 = 1 and, by
Lemma 2.10, r - 1 = 2. Since r = 2n+1 \geq 5, we get a contradiction. For 2p

\prime +1+1 = (3r - 1+1)/2,

similar to the above we get a contradiction.
h) Therefore K/H \sim = 2Dr\prime (3), where r\prime = 2m +1 \geq 5. Obviously m \leq n. Since p \in \pi (K/H),

it follows that p = (3r - 1 + 1)/2 is a divisor of
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3r
\prime (r\prime  - 1)(3r

\prime 
+ 1)

r\prime  - 1\prod 
i=1

(32i  - 1).

Note that p is a primitive prime divisors of (3r - 1 + 1)/2. Now, if m < n, then p \nmid | G| , a contradic-
tion. Therefore m = n and hence r\prime = r. Thus, K/H \sim = 2Dr(3).

Case 2. If p = (3r + 1)/4, then similar to case 1, we can conclude that K/H \sim = 2Dr(3) and by
the fact that | G| = | 2Dr(3)| , we have H = 1, G = K and G \sim = 2Dr(3) as required.

Theorem B is proved.
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