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UNIQUENESS THEOREM FOR HOLOMORPHIC MAPPINGS
ON ANNULI SHARING FEW HYPERPLANES

TEOPEMA €IUHOCTI AJA 'OJIOMOP®HUX BIIOBPA’KEHb
HA KJIBLSX 3 KIJIBKOMA CINIVIBHUMMU TI'ITEPIIVIOHNIMHAMMU

We prove a uniqueness theorem of linearly nondegenerate holomorphic mappings from annulus to complex projective
space P"(C) with different multiple values and a general condition on the intersections of the inverse images of these
hyperplanes.

JloBeneHo TeopeMy €IMHOCTI JUIs JiHIITHO HEBHPOIPKEHHX TOJIOMOP(GHHX BiTOOpaXeHb 3 KiJbI[ 10 KOMIUIEKCHOTO ITPO-
extrBHOTO mpoctopy P (C) i3 pi3HUMH MHOKHHAMH 3HA9€Hb i 3arallbHOI0 YMOBOIO OO IepeTHHY MpooOpasiB Timep-
IUTOLIUH.

1. Introduction. In 1975, H. Fujimoto [3] proved that if two linearly nondegenerate meromorphic
mappings of C™ into P"(C) which have the same inverse images of 3n + 2 hyperplanes in general
position counted with multiplicities then they are identical.

In 1983, L. Smiley [9] obtained a uniqueness theorem for meromorphic mappings which share
3n 4 2 hyperplanes in P"(C) in general position without counting multiplicities (i.e., they have the
same inverse images of 3n + 2 hyperplanes and are identical on these inverse images) and satisfy an
additional condition “codimension of the intersections of inverse images of two different hyperplanes
are at least two”.

Later on, the unicity problem of meromorphic mappings with truncated multiplicities has been
extended and deepened by contribution of many authors. These authors have improved the result of
L. Smiley in the case where the number of hyperplanes is replaced by a smaller one. We state here
the recent result of Z. Chen and Q. Yan [2] which is one of the best results available at present.

Take a meromorphic mapping f of C™ into P"(C) which is linearly nondegenerate over C™
such that for positive integers k, d, 1 < d < n, and ¢ hyperplanes Hi,..., H, in P"(C) in general
position with

k+1
dim f~* ﬂH,-j <m-2, 1<ij<...<ip1<gq.
j=1

Let F ( £ {Hi}gzl,k:,d) be the set of all linearly nondegenerate over C™ meromorphic maps
g: C™ — P"(C) satisfying the conditions:

(2) min(v(y ), d) = min(v p;),d), 1 <j <g,

(b) f(z) = g(z) on UL, f~1(H,).

Denote by 45 the cardinality of the set S.

Theorem A [2]. $F(f, {H;}7"°,1,1) = 1.
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In 2012, H. H. Giang, L. L. Quynh, and S. S. Quang [4] introduced new techniques to treat
the case k > 1. However, they only considered the case where the mappings f and g share all
hyperplanes with the same multiple values. Thus, our purpose of this paper is to prove a uniqueness
theorem for annulus similar to the results of Giang, Quynh, and Quang in the case where the mappings
f and g share all hyperplanes with different multiple values as following.

Theorem 1.1. Let f1, fo: A(Ry) — P"(C) be two admissible linearly nondegenerate holomor-

Ry
P™(C), located in general position and k (< n) be a positive integer. Let k;, 1 < i < q, be positive

1
phic mappings, where A(Rp) = <2z | 0 < — < |z] < Ro}. Let Hy,...,H, be hyperplanes in

integers or +oo. Assume that:
(i) min{l, V?thi)éki} = min{1, V?fz,Hi),ﬁki}for 1=1,...,q;
(i1) ffl(ﬂfill Hi))=2,1<i; <...<ip1 < g
(iiN) f1 = fo on Ul fi ' (Hj).
Then we have fi = fo if either ¢ > 2(n + 1)k and

i 1 <(q—n—1)(q—2k—|—2kn)—2an
—kit1 (¢ — 2k + 2kn)n

or ¢ <2(n+ 1)k and

2. Some definitions and results from Nevanlinna theory on annuli. In this section, we will
recall some basic notions of Nevanlinna theory for meromorphic functions on annuli from [7] (see
also [1, 5, 6]).

For a divisor v on A(Ry), which we may regard as a function on A(Ry) with values in Z whose
support is discrete subset of A(Ry), and for a positive integer M (maybe M = o0), we define the
counting function of v as follows:

Zlg\zlﬁt min{M,v(z)}, if 1<t < Ry,

. . 1
Ztg\z|<1 min{M,v(z)}, if o <t<l1,

[M] (t) =

no —

and

1 r
[M] [M]
N(EM](T,V) = /no(t)dt—l—/no t(t)dt, 1 <r<o.

t

1 1
For brevity we will omit the character M if M = co.
For a divisor v and a positive integer k£ (maybe k = +00), we define
v(z), if wv(z) <k, v(z), if wv(z) >k,
ver(z) = and  vop(z) =

0 otherwise 0 otherwise.

For a meromorphic function ¢, we define
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yg (resp., v2°) the divisor of zeros (resp., divisor of poles) of ¢,

Vp = 1/2 — 1/;0,

Vg,gk = (Vg)gm Vg,>k = (Vg)>k-

Similarly, we define VS?S o 1/:;?> i» Vio,<ks Vio,>k and their counting functions.

For a discrete subset S C A(Ry), we consider it as a reduced divisor (denoted again by S) whose
support is S, and denote by Ny(r,.S) its counting function. We also set xs(z) = 0 if z ¢ S and
xs(z)=1ifz € S.

Let f be a nonconstant meromorphic function on A(Ry). The proximity function of f is defined
by

2 2

i0 _ )
f(e >’d9+217r/log+ ‘f(rew)‘dﬁ— i/logJr ‘f(ew)}dﬁ
0 0

r

27
1
mo(r. ) = 5 [ log*
0

and the characteristic function of f is defined by
T()(T', f) = mO(Ta f) + N()(T', VJOCO)

Throughout this paper, we denote by S¢(r) quantities satisfying:
(1) in the case Ry = 400,

S¢(r) = O(log(rTo(r, f)))

for r € (1,+00) except for a set A, such that / M~ Ydr < 400 for some A > 0,
A,
(i1) in the case Ry < 400,

Se(r) =0 <log<TO(T’ f))> as r— Ry

Ry —r
for r € (1, Rp) except for a set A such that / o < 400 for some A > 0
» 410 Y 7 A (Ry — r)M1 =
The function f is said to be admissible if it satisfies
T

lim sup o(r, f) = +oo inthecase Ry= 400

r—+oo logrT
or

Ti
lim sup M =400 inthecase 1< Ry < 4o00.
— log(Ro — r)

r— Ry

Thus for an admissible meromorphic function f on the annulus A(Ry), we have S¢(r) = o(To(r, f))
as r — Ry for all 1 < r < Ry except for the set A, or the set A/ mentioned above, respectively

(ct. [1]).

A meromorphic function a on A(Rp) is said to be small with respect to f if
To(r,a) = Sy(r).

Through this paper, by notation || P”, we mean that the asseartion P holds for all 1 < r < Ry
except for the set A, or the set A/ mentioned above, respectively.
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Lemma 2.1 (Lemma on logarithmic derivatives [1, 5-7]). Let f be a nonzero meromorphic
Sunction on A(Ry). Then for each k € N we have

k)
mo T,T :Sf(T), 1 <r < Ry.

Theorem 2.1 (First main theorem for meromorphic functions and values [1, 5-7]). Let f be a
meromorphic function on A(Ry). Then for each a € C we have

TO(T7f):T0<T7 )‘i‘Sf('l"), 1§7“<R0.

1
f—a

Then for every small (with respect to f) function a (a # o) on A(Ry), we obtain

T f) < Tolrs = @)+ Totr) =To (1 = ) + Sugg-(r) + 5500

Similarly, we get
1
To (7'7 f—a) =To(r, f —a) + Sl/(f—a)(r) <

< To(r, f) + To(r, —a) + S1/(j—a) (1) + Sp(r).

Therefore, we have the first main theorem for meromorphic functions and small function as follows.
Theorem 2.2 (First main theorem for meromorphic functions and small functions). Let f be a
meromorphic function on A(Ry) and let a be a small function with respect to f. Then we have

To(r, f) = To<7‘, fia> +S8f(r), 1<r <R

3. Nevanlinna theory for holomorphic mappings from an annulus into a projective space.
Let f be a holomorphic mapping from an annulus A(Ry) into P"(C) with a reduced representation
f=(fo:...: fn). The characteristic function of f is defined by

21

'f(iei9> Hd@ - jr/log | £(e®)| a8,
0

27

27

_ 1 i 1

= 27T/10ng(7‘e )Hd9—|— 27r/log
0 0

1
where [[f[| = (fol* + ... + [ fal?) %

Let H be a hyperplane in P*(C) given by H = {(wo : ... : wy) | aowo + ... +anw, =0}. We
set (f,H)=aofo+ ...+ anfn. The proximity function of f with respect to H is defined by

TO(T> f)

2w
1

mo(T,f,H):%/lOg
0

£ re)|[I1H]

(. m) (o)

2w

S I e

0
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=

where [|H|| = (|ao|® + ... + |an]?)2.
By Jensen formula, we obtain
TO(T7 f) = mO(Ta f7 H) + NO(T7 f*H>7

where f*H denotes the pull back divisor of H by f.
Lemma 3.1. Let f be as above. Let Hy and Ho be two distinct hyperplanes of P"*(C), then we
have

(f, H1)
Ty <r, i H2)> < To(r, f)+O().

Let {H;}!_,, ¢ > n+ 2, be a set of ¢ hyperplanes in P"(C). We say that the family {H;} , is
in general position if ﬂ;lill H;, = @ forany 1 <i; < ... < ipq1 < q. Using the same argument
as in the proof of the Second Main Theorem for holomorphic curves from C into P"*(C) (see [8],
Theorem 3.1), we have the following Second Main Theorem for holomorphic curves from an annulus
into P*(C).

Theorem 3.1. Let f: A(Ry) — P"(C) be a linearly nondegenerate holomorphic mapping. Let
{H;}!_,, ¢ > n+2, be a set of q hyperplanes in P"(C) in general position. Then

q
(q—n—l)To(T,f)SZN(gn](T,f*HZ‘)-FSf(Y’), 1ST<R07
i=1
where f*H; denotes the pull back divisor of H; by f.
4. Proof of Theorem 1.1. In order to prove Theorem 1.1, we need the following.
Lemma 4.1. Let f be nonconstant holomorphic mappings of A(Ry) into P"(C). Let H be a
hyperplane in P™(C) in general position and k (> n) be a positive integer. Then

n n n
Ng" () < "(1 - M) No (i) + 5 No ()

k+

and

n n 1 n
Proof. From

N(gn] (7“: V?f,H)) = N(gn] (7’7 V?f,H),gk) + N(gn] (7, ’/?f,H),>k)

and
n

[n] n [n]
No" (V) 55) < AL Vit ) >k) < 1 (NO(Ta Yirm) = No" (r; V?f,H),gk))
we deduce that

n

n n n
N([) ](r, V&H)) < <1 T 1)]\7([) ](7«7 V&H)’Sk) + ) 1]\70(7“, l/?f’H)) <

A

n 1 n
< n<1 — M)MQ ](7", V?f,H),gk) + mNO (r, V?f,H))'

This completes the proof of the first inequality of the lemma. The second inequality of the lemma
follows immediately because of Ny (r, I/?f H)) < To(r, f) + Sy(r).
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Lemma 4.2. Let f1, fo be nonconstant admissible holomorphic mappings of A(Ry) into P™(C).

Let {H;}!_|, ¢ > n+2, be hyperplanes in P"(C) in general position. Let k;, 1 < i < g, be positive
integers or +00. Assume that

min{u?thi)éki, 1} = min{”?fg,Hi),gku 1} forall 1<1i<q.

q 1 qg—n—1 _ _
Iry . s e [To(r, f2) = O(To(r, f1)) and |[To(r, f1) = O(To(r; f2))-
Proof. By the Second Main Theorem, we have

q
(g —n—DTo(r, f2) < S NS (v, ) + Spar) <
=1

q
Z< ( ki +1>N£1](T Yot < ki)+kiilTO(T7f2)>+Sf2(T)§

=1

q
n
<> <nN(£” (r Vg zn) + 5 ol f2)> +5p,(r) <
i=1 ’

< qn To(r, f1) +

1 To(r, f2) + S5, (7).

T MQ

Thus

(o1 )t < 0t )+ 850

i=1 ki

Casel. If Ry = +oo, then ||Sy,(r) = O(log(rTy(r, f2))). Therefore there exists a positive
constant K such that

e Sp(r) K log(rTo(r, f2))
lgg—llgf To(T, fz) 17"—>+O°f ( 7f2)

TO(Tv f2)

Ro—r
S ( ) KlOg(J—g(r,fQ))
liminf —22 7 — liminf 0—" /) <

r—Ro, T¢AL To(r fz) r—Ro, r¢ Al T()(T, fg) -

=0.

Case2. If 1 < Ry < +oo then ||Sp,(r) = O(log(

exists a positive constant /K such that

)) as r — Ry. Therefore there

Klog< >
< limsup fo—r =0.

r—Ro To(r, f2)

Hence ||To(r, f2) = O(To(r, f1)). Similarly, we get || To(r, f1) = O(To(r, f2)).
Lemma 4.2 is proved.
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Proof of Theorem 1.1. Assuming that f; # fo. By changing indices if necessary, we may
assume that

(fHy) _ (fuH2) _ _ (uHe) o (i) - (o Hes)
(fo, Hi) = (fo,Ho) " (fo, Hiky) 7 (fo, Hiyw1) 7 (f2, Hiy)
group 1 group2
(fr,Hip1) _ _ (f1, Hiy) (fi,Hpgi41) (1, Hi,)
(fos Hipw1) — (fo, Hiy) (fo, Hipr) — (fo Hi,)
group 3 group s
where ks = q.

For each 1 < i < ¢q, we set
i+ n, if i4+n<g,
o(i) =
i+n—gq, if 14+n>gq,
and

(flv )(f27 ) (f27 )(f17 )

(flaHi) an (f17 0'(1)
(fo, Hy) (fz, Hy )

Since f1 # fo2, the number of elements of each group is at most n. Then
belong to distinct groups. Therefore P; £ 0, 1 < i < q. We set
q
p=][r 0
i=1
and

k+1

S = U it ﬂl H;,
=

1<) <. <ipy1<q

Then S is an analytic set of codimension at most 2. By Jensen formula and by the definition of the
characteristic function, we have

2T 2 27
1 1 . 1 )
Np(r) < o /1og 1P (re)|jdo + /bg ‘P(9> Hda = /1og |P(e)]|d6 <
0 0
1 q 27 %
< oe > 1o (10 HOP + | Hogo ) dbs
& i=1 0

q

2
+2:;_Z/10g f27 )| +’(f2a o(i) |) d9<
0

i=1
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2
= glﬂi;o/log (Hle(III%H2 + HH(,(Z.)||2)%)MJr
.
+217T;0/10g 1£20 (11 + | Ho o) )%) —
2r 2T
N zlw/log 1£:1) d0+/1og(|!fz!)d9 +0(1) =
0 0
= q(To(r, f1) + To(r, f2)) + O(1). (4.1)

1

On the other hand, we let £ := —, then fi(£), f2(£) are holomorphic mappings on A(Rp). By
z’

applying the Second Main Theorem we get, for ¢ = 1, 2,

q
(g —n—1)Toy(r, fi) < Z (r, l/?finj)) + Sy, (r). 4.2)

We put S¢(r) = Sy, (1) + Sp,(r), 1 <r < Ry.

Fix a point z & I(f1)UI(f2)US. We assume that z is a zero of functions (f1, H;,),. ., (f1, Hi,)
with multiplicities my, . .., my, respectively, where 1 <1i; < ... < i <gq, t <k, and z is not zero
of any (f1, H;) for i ¢ {zl, ...,it}. Foranindex i € {1,...,q}, we distinguish the following four
cases:

Casel: i,0(i) & {i1,...,it}. Then z is a zero point of P, with multiplicity at least 1, since
f1(z) = fa(z). We denote v(z) the number of indices 4 in this case. It is easy to see that v(z) >
> q— 2t.

Case2: i € {iy,.. zt} and o (i) & {i1,...,%}. Then z is a zero point of P; with multiplicity

0
(f1,H;),<k;’ (f27Hi)7§k?i

Case3: o(i) € {i1,.. it} and ¢ & {i1,...,%}. Then z is a zero point of P; with multiplicity

0
at least min {V(fl, Hoy i) <k’ (fz, (i) ki

Case4: i,0(i) € {i1,...,i:}. Then z is a zero point of P; with multiplicity at least

at least min {I/

. . 0 0
mm{ V(f,Hi) <k (fz,Hi)éki} + min {I/(flecr(i))agk‘i’ V(f27Ha(i))7Ski}.

Therefore, from the above four cases, it follows that

) > 2me{ i, (2 W i, (2) ) +0(2)

>22m1n{ ). <ki, (2),v (f2, )<k, ()}+q—2t.

We consider the following two cases.
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UNIQUENESS THEOREM FOR HOLOMORPHIC MAPPINGS ON ANNULI SHARING FEW HYPERPLANES 257

Casel. If ¢ > 2(n + 1)k, then by using the fact that, for any two positive integer a and b,
min{a, b} > min{a,n} + min{b, n} — n, we get

t
Z (mln {n Y(f,H ij),<ki; } + min {n’ V?meij)Skij} o n) tq-2t=

I
ﬁ%“

<m1n {n V(fh <k, } + min {n, V?f27Hz‘j)7Skij }) —2nt4+q— 2t >
1

<.
Il

> 2

-

(mln {n l/(fl H,,). <k, } -+ min {n, V?meij)Skij }) +q—2(n+1)k>
1

J

- (2 " w> > (min {005, 1. f + in {mso e }) =

i=1

_ 4T erTakn Qk + 2hn Z (mln {n V(f,Hy), <ki} +min {n, y?fz’Hi)’Ski})

=1

for all z outside the analytic set I(f1) U I(f2)US.
Integrating both sides of the above inequality, we get

q—2]{:—|—2]€n 1 n n
NP(T) = TZ ( [ ](7’ V(fl )<ki) +N(g }(7“, V(OvaHi)’gki)) -

q — 2k + 2kn a " n
- ok Z <NfE ](T’ U?flvHi)) - N(g ](T’ V?fl,Hi),>ki)+

+N([)n} (Tv V?fz,Hi)) - N(gn] (7“, V?f2vHi)7>ki)> =

q — 2k 4+ 2kn I n n
I Z <N£ '(r, Vi) + N (v Whi) — o (To(r, f1) + To(r, fz)))-
4.3)

Combining (4.2) and (4.3), it shows that

Np(r) > % (( 11— Z T ) r, 1)+ To(r, f2)) —Sf(r)). (4.4)

Thus, by (4.1) and (4.4) we have

q(To(r, fr) + To(r, f2)) >
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This implies that

z 2qnk
<q—n— -3 s sy %n) (To(r 1) + To(r, f2)) < S5(r). (43)

Case2. If ¢ < 2(n + 1)k, then we get

V?D(Z)Z<2— nt Dk >Zm1n{ ) <k, (f27 )Skij}—’_
n+1kzt;<mm{nyf1» i) <ki, }—i—mm{n V(f2 1)<k, } >+q—2t2
j=

q qnt
> (2 - t— — 2t
- ( (n-i—l)k:) (n+1)k+q +

t
q . 0 . 0

7=1

q
q : 0 : 0
=+ Dk Zl (mm {”’ ”<f17Hi>sm} min {”’ V(2 Hip) <k })
1=

for all z outside the analytic set I(f1) U I(f2) US.
Integrating both sides of the above inequality, we obtain

q
q [n] [n] _
Np(r) 2 (n+ 1)k ; <N0 (1", V?flﬂi)éki) +No (7‘, V?fzﬂz‘)éki)) -

q
q n n
T (n+ 1k DG (o, ) = NG (v, )+
=1

+N(gn] (r, V(OfQ,Hi)) - N(gn] (r, ”?f27Hi)v>’“i)) =

n

q
q n n
= n+ Dk Z; (N(g ' Y ) + Ny (r, W) — A (To(r, fr) + To(r, f2))>- (4.6)

Combining (4.2) and (4.6), it shows that

Np(r) > (nfl)k ((q— - 1—2 o ) 7, f1) + To(r, f2)) —Sf(T)>- (4.7)

Thus, by (4.1) and (4.7) we have

q(To(r, fr) + To(r, f2)) >

q g n
Z Dk ((H— -2 1) (To(r, 1) + To(r £2)) sm) .

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 2
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This implies that

(C] -n—1- z; k‘zi 1~ (n+ 1)k5> (To(r, f1) + To(r, f2)) < S¢(r). (4.83)

We consider the following two cases.
Casel. If Ry = +oo, then ||Sf(r) = O(log(r(To(r, f1) + To(r, f2))). Therefore there exists a
positive constant K such that

lim inf 5¢(r) i ing 2080 (00 1) + To( ) _

r—+oo To(r, f1) +To(r, f2) — r—=+oo To(r, f1)) + To(r, f2)

Letting r — oo, we get two subcases.
Subcase 1.1. If ¢ > 2(n + 1)k, then by (4.5) we have

q
n 2qnk

—n—1- - <0

a-n ;k‘i—l-l q—2k+2kn — 7

ie.,

zq: 1 >(q—n—1)(q—2k‘+2k‘n)—2an
—ki+17 (¢ — 2k + 2kn)n '

This is a contradiction.
Subcase 1.2. If ¢ < 2(n + 1)k, then by (4.8) we get

q

n

q—n—l—zki+1—(n+l)k§0,
i=1

1.e.,

zq: 1 >q—n—1—(n—|—1)k
zlki+1_ n

This is a contradiction.
Case2. If 1 < Ry < +00, then

\Wﬂmzoo%<ﬁwjgﬂ?“bv> as - Ro.

Therefore, there exists a positive constant K such that

To(r, fr) + To(r, f2)
5(r) wog )

lim inf = liminf Ro—r <
r—Ro, r¢AL To(r, f1) + To(r, f2)  r—Ro, rga, To(r, f1) + To(r, f2) N

1
K log< )
< lim sup o —r =0
T rore Lo(r, fi) + To(r, f2))
Letting r — Ry, by repeating the same arguments of the Case 1, we get a contradiction.

Hence, from the above two cases, it follows that f; = fs.
Theorem 1.1 is proved.
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