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RECURRENCES AND CONGRUENCES
FOR HIGHER ORDER GEOMETRIC POLYNOMIALS
AND RELATED NUMBERS

PEKYPEHTHI TA KOHI'PYEHTHI CIHHIBBIIHOIIEHHS
JJIA TEOMETPHYHUX ITOJITHOMIB BUIIOT'O ITOPAJIKY
I BIAITOBIIHUX YUCEJI

We obtain new recurrence relations, an explicit formula, and convolution identities for higher order geometric polynomials.
These relations generalize known results for geometric polynomials, and lead to congruences for higher order geometric
polynomials, in particular, for p-Bernoulli numbers.

OTpuMaHO HOBiI PEKypEHTHI CHiBBiIHOIIEHHS, TOYHY (HOPMYTYy Ta TOTOKHOCTI 3TOPTKH IS TEOMETPUYHHUX MOTIHOMIB
BHIIOT0 Hopsi/AKy. Lli criBBiqHOLIGHHS y3araibHIOIOTh BiZIOMI PE3yJIBTaTH JUIsi FEOMETPHUYHNX MOJITHOMIB 1 JaI0Th MOMKJIUBICTD
OTPHMATH KOHTPYEHTHOCTI JJIsi TEOMETPUYHHUX MOJTIHOMIB BHILOTO TOPSKY, 30KpeMa Uil p-ducen bepryimi.

1. Introduction. For a complex variable y, the geometric polynomials w,(y) of degree n are
defined by [31]

wn(y) :Z{Z} klyk, (1.1)

k=0

where {Z} is the Stirling number of the second kind [15]. These polynomials have been studied

from analytic, combinatoric, and number theoretic points of view. Analytically, they are used in
evaluating geometric series of the form [4]

00
k=0

with

d\" 1 i b 1 y
—_— —_— = = w
Yay) 1=y =" "1y 1y
for every |y| < 1 and every n € Z, n > 0. Combinatorially, they are related to the total number of
preferential arrangements of n objects

wp (1) == wy, = Z {Z} E!,

k=0

that is, the number of partitions of an nm-element set into & nonempty distinguishable subsets
(c.f. [10]). Number theoretic studies on the geometric polynomials are mostly originated from their
exponential generating function
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i : 1
= n! 1—y(et—1)

1
For example, setting y = —3 gives
1 2 T,
— ) = 1-2"") B, =-2
wn< 2) 2 ) But = —om,

where B,, are Bernoulli numbers and 7, are tangent numbers. Bernoulli numbers also occur in
integrals involving geometric polynomials, namely, we have [24]

1
/wn(—y)dy =B,, n>0.
0

Moreover, we note that [21]

1

1
1- pn_dzian
/( y)Pwn(—y)dy P R
0

where B,, ;,, are p-Bernoulli numbers [30] (see Section 2 for definitions). The congruence identities
of geometric numbers is also one of the subjects studied. Gross [16] showed that

Wn44 = wy, (mod 10),

which was generalized by Kauffman [19] later. Mez06 [27] also gave an elementary proof for Gross’
identity. Moreover, Diagana and Maiga [11] used p-adic Laplace transform and p-adic integration
to give some congruences for geometric numbers. We refer to the papers [5—7, 12, 20, 29] and the
references therein for more on geometric numbers and polynomials.

In the literature, there are numerous studies for the generalization of geometric polynomials (see,
e.g., [13, 14, 22, 23]). One of the natural extension of geometric polynomials is the higher order
geometric polynomials [4]

w (y) = Z {n} (rry®, >0, (1.2)

=0 Uk
where (), is the Pochhammer symbol defined by (z)

It is evident that wg)(y) = wy(y). The polynomials w

dN" v (RN L ey (Y
(ydy) (_WH—Z( K )k =gyt (1—y) (1.2)

=z(z+1)...(z+n—1) with () = 1.
r) (y) have the property [4]

3SoS

k=0
for any n,r = 0,1,2,..., and may be defined by means of the exponential generating function [4]
o0 r
t" 1
E ’ ) = [
wn (y) 1 < t ) .
= n! 1—y(et —1)

On the other hand, the higher order geometric polynomials and exponential (or single variable
Bell) polynomials
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are connected by
1 oo
(r) _ r—1 -2
0

(c.f. [4, 8]). According to this integral representation, several generating functions and recurrence
(r)

relations for higher order geometric polynomials were obtained in [8]. Namely, w,, |,

(y) admits a

recurrence relation according to the family {yj wli )(y)} as follows:

wil )= <:) {7} ()5 F w7 (y). (1.5)

k=0 j=0

Setting y = 1 in (1.2), we have higher order geometric numbers wﬁfﬂ). The higher order geometric

(1)

numbers and geometric numbers are connected with wy,’ = w, and the formula
1 < |r+1
(r) — 1.6

which was proved by a combinatorial method in [1] (Theorem 2). Here, is the Stirling number

n
k
of the first kind [15]. Moreover, some congruence identities for the higher order geometric numbers
can also be found in the recent work [11].

In this paper, dealing with two-variable geometric polynomials defined in [25] by

IO SR S S
n;)wn (239) (1_y(et_1)) e, (1.7)

we obtain new recurrence relations, an explicit formula, and a result generalizing (c.f. [8])

n (r) (r)
ARG Wy (y) Hrwn(y)

for higher order geometric polynomials. We particularly use the explicit formula to obtain an integral
representation similar to (1.4) involving r-Bell polynomials, which are defined in [26] as

n(n+
wn,r(y)=Z{n r} v, (1.8)

o Lk+T

where {Z 1 :} are r-Stirling numbers of the second kind [3]. The resulting integral representation
T

enables us to utilize some properties of r-Bell polynomials for higher order geometric polynomials.
In particular, we evaluate the infinite sum
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i(k+r)" <k+;_1>

k=0

in terms of higher order geometric polynomials, obtain an ordinary generating function for higher
«) (y), and generalize (1.6). We

order geometric polynomials, introduce a new recurrence for w,,,,

also give an integral representation relating the higher order geometric polynomials and p-Bernoulli
numbers, and express properties of p-Bernoulli numbers originating from those for the higher order
geometric polynomials. Besides, using some of theses results, we prove congruences for higher order
geometric polynomials and p-Bernoulli numbers. Particularly, we state a von Staudt— Clausen-type
congruence for p-Bernoulli numbers.

This paper is organized as follows. In Section 2, we summarize known results that we need
throughout the paper. We state and prove aforementioned results for higher order geometric polyno-
mials and p-Bernoulli numbers in Section 3. In Section 4, we deal with some congruences for higher
order geometric polynomials and p-Bernoulli numbers.

n

kz] can be defined by means of

2. Preliminaries.  The Stirling numbers of the first kind [

JJ(CIT+1)...(JZ+TL—1)ZZ[Z] k
k=0

or by the generating function

< [n a:k
(—log(1 — x))k = k! Z [k] W

n=k

(c.f. [9, 15]). It follows from either of these definitions that

nl ) n—1
e[

n n
[]:O, if n>0, and H:o, if k>n or k<O.
0

_|_

n—l]
2.1
k—1

with

We note the following special values which will be used in the sequel:

m:l, m:(n—m it >0

LG L) L C)0)

Many properties of [n] can be found in [9, p. 214-219]. In particular, we have

k
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=2, 0ol

This equality can be used to obtain some congruences for [Z] For example, if we take n = ¢,

where ¢ is a prime number, then

q
[]EO(modq), k=23,...,q—1, (2.2)

since

q
() =0 (modgq), i1=1,2,...,q—1.

7

n
The Stirling numbers of the second kind {k} can be defined by means of

"o [n
mn:Z{k}x(m—l)...(:n—k:—l—l),
or by the generating function

(ex—l)k_k!Z{k}fl!

n=~k

(c.f. [9, 15]). It follows from the generating function that
n n—1 n—1
= +k
k k—1 k

n
N =0, if k>n or k<O,

with

n _l - _1\k—J k -
{k}_k! j;( 1) <j>]. (2.3)

Performing the product of two generating functions for {

k}’ we obtain the convolution for-
mula [18]
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| R i ] 41

Letting k = k1 + k2 and n = ¢, a prime number, we deduce that

q
{k}EO(modq), k=23,...,q—1, (2.4)

since again

q .
() =0 (modgq), i=1,2,...,q—1,

1

and 1 < k < q.
Stirling numbers have been generalized in many ways. One of them is called r-Stirling numbers

(or weighted Stirling numbers). r-Stirling numbers of the second kind {Z} can be defined by

means of the generating function (see [3]) '

n

(&~ e =1y {n} % (2.5)

n==k k

The Bernoulli numbers B,, are defined by the generating function

oo

t gt
et—l_z "l

n=0

or by the equivalent recursion
n—1 B
— k f—

The first values are
1 1 1 1
B = — B = —— e —
2 6 ) 4 30 ’ 49 )
and Bopy1 = 0 for k > 1. The denominators of the Bernoulli numbers can be completely determined
due to von Staudt-—Clausen theorem: for any integer n > 1, By, can be written as

1
By, = A2n - Z 5’
q: (¢—1)[2n
where Aj), is an integer and the sum runs over all the prime numbers such that (¢ — 1)|2n. It can be
stated equivalently as

0 (modg), if (¢—1)12n,
qBan = (2.6)
—1 (modgq), if (¢—1)]|2n.

We note that this classification is also valid for Bj.
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Many generalizations of Bernoulli numbers appear in the literature. One generalization is the
p-Bernoulli numbers B, ,, which are due to Rahmani [30], defined by means of the generating
function

oo "L‘n
> Bup—r = oFi(1,1;p+2,1-¢"),
!
n=0
where 9 F} (a, b; ¢; ) is the Gaussian hypergeometric function

> a Zk
2Fi(a, b;c;2) = Z (@O zz)(:)kk'

k=0

p-Bernoulli numbers are related to Bernoulli numbers in that B, o = B,, and

P

p !
S| CDFBusi = = Bay for n,p >0, 2.7)

=0 Lk P

and satisfy an explicit formula of the form
P+l |n+p 1Dk + p)!
Bup="——> Uk +p)! (2.8)
= P

3. Recurrence relations. From the generating function for higher order two-variable geometric
polynomials (1.7), we have

m"o(n
W (@y) =Y < ) wy (y)a" k. 3.1
k=0 \k

Then it is obvious that

w(0y) =w(y),  w(w;y) = walw;y),

w((0;1) =w( and w1 (0;1) = w,.

Setting « + r instead of = in (1.7), we have
w (z+ry) = (1)) (—z;—y — 1) for n > 0.
Then, for x = 0, we conclude that
w (ryy) = (=) w (—y = 1), (3.2)

a relationship between two-variable and single variable higher order geometric polynomials.
Proposition 3.1. For n > 0 and r > 0, we have the following recurrence formulae:

> <:) w ()t = (<1)"w{) (—y - 1) (3.3)
k=0
and
n o /n (r+1) I
> <k> wy, " (y) = @wnﬂ(y). (3.4)
k=0
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Proof. Combining (3.1) and (3.2), we have (3.3). Furthermore, taking = 1 in (3.1) and using
the recurrence relation presented in [25] (Theorem 3.4)

wgl(ﬂﬁ; y) = w{ (z;y) + ryw (@ + 1;y)

for x = 1, we obtain (3.4).
Theorem 3.1. For every n > 0 and every ri,r2 > 0, we have the convolution identity

Z<n> ) lr2) gy Pt )+ 1+ = DT )

) ~ %n41
2\, wy, U (y)wy, 2y (y) = (r1+ro—=1)(1+4y) o

Proof. We first note that

" ;((:i)Z))T+1 - % <<1—y(16t—1)> ext) (- ygzzjt— )"

Let x =21+ 29 — 1 and » = r; + 9 — 1. Then by (1.7), product of two infinite series, and formal
differentiation under summation, we obtain

6(3?—0—1)1& 6(x1+a:2)t
(1 . y(et . 1))T‘+1 y(rl T2 ) (1 - y(et . 1))T1+T2

yr

t'I’L

> "= (r
=y(ri+ra—1) ngl)(xl;y)ﬁ Z wrg 2 (22; y)m =
n=0 ’ ’

o

:y(r1+r2—1)z

n=0

() . tn
3 <k> w ™ (@) (e y) |

k=0

rett e (it 0 tn
=(r1+ax2—1 wy T (p 10 — 15 y) —,
(17y(6t71))7" ( 1 2 )T;O n ( 1 2 y) nl

and
d 1 Tt LN (i) t"
— || =) ") = - 1y)—.
7 <<1—y(et—1)> e > nzzownﬂ (331—|-:E2 ,y)n!

. : " : :
Equating coefficients of — on both sides, we derive
n!

N S TG P D
Z k Wy, (xlvy)wnfk(x%y)

k=0

1 +ra—1 ra—1
B y(ri+re—1) [w$1r2 )($1 + 23— Liy) — (21 + 22 — Dw 177 )(5751 +x2 — 1;9)]'
Setting x1 = r1, x9 = r9 and using (3.2), we obtain the convolution formula (3.5).
In the following theorem we give a new explicit expression for higher order geometric polyno-

mials and numbers.
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Theorem 3.2. For n > 0,

Wl (y) = {Zi} (Fr(—1)"E (y + 1)F.

In particular,

" (n+r

=3 ()s(—1)"HH2k

w,, )k .
k=0 {k ‘H'}

1627

(3.6)

Proof. Writing x = r in (1.7), employing the generalized binomial formula, and using the

generating function of r-Stirling numbers (2.5), we have

[e.e] r oo k
O 1 rt _ ple—1)"
;)w” o (1 —yle! 1>> = L e

= Z{n—l—r} (r)kykgzz [Z{n—l—r} (T)kyk] g

—on—k (k+T

. . " .
Comparing the coefficients of —, we obtain
n!

" (n+7r
o :Z{ } k
wy ' (13y) (rey”.
o Lk +7 ,

Using (3.2) and replacing y with —(y + 1), we reach the desired equation.

Now, with use of Theorem 3.2, we connect higher order geometric polynomials and r-Bell

polynomials in the following lemma which will be useful for the subsequent results.
Lemma 3.1. For every n > 0 and every r > 0, we have the integral representation

1
F(T

(1"l (~y -

n

/X’ Yonr(yA)e ™ dA.
0

Proof. By (1.8) we have

[e.o]

0

Using (3.6) in the above yields the desired equation.

n—+r
Ao, (yN)e A dA = / NFE=le=2gx = (r+ k)y"
/ Z k+r s Z k+r

(3.7)

Higher order geometric polynomials are seen in the evaluation of the infinite series (1.3). If we

apply Lemma 3.1 to the Dobinski’s formula for r-Bell polynomials

1 & (k+r)"
Son,r(y) = Z Txk7

ey
n=0

we can evaluate a new infinite series in terms of higher order geometric polynomials.

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 12



1628 L. KARGIN, M. CENKCI

Theorem 3.3. For every n > 0 and every r > 0, |y| < 1,

Sk (Tt o (1)

k=0

Next we introduce ordinary generating function for higher order geometric polynomials.

1
Theorem 3.4. For real y < —5 the higher order geometric polynomials have the generating

1" t+1 t+t+1 1
Zw (=1) 2F1<T+ 77’;T+ * ;y-i— )

T (It rty t t y

function

Proof. We start by observing the ordinary generating function for r-Bell polynomials [26]
(Theorem 3.2)

[e.o]

-1 1 rt—1 rt+¢t—1
th= ——— 1 F : vy ).
n§:0 Onr(Y) _1ev 111 < ;0 n ,y>

In light of the equation (3.7), this equation can be written as

- T t—1 rt4t—1
Z(—l)nwgﬂ)(—y — " 1 /)\T Le=wrDA By (r ;r + ;y/\> d\ =
n=0 B Tt 0 t t

rt —1
Z k‘ /ATuHC 1 *(y+1))\d)\_
0

1—rt k:O rt—i—t—l
t k

(m;1>kwn <liy)k:

1 [e.e]
:(1—NXI+wTZ%<N+t—1>k!
¢ k

P rt—1 rt+t—-1 y
= T ; .
QI—rt)1+y) '\t "7t 14y

We then replace —(y + 1) with y and —t with ¢ to obtain the desired equation.
(r)

n+m

Now, we give an alternative representation for w (y), which also generalizes (1.6) in the
following theorem.

Theorem 3.5. For all nonnegative integers n, m, r and p, we have

m o m+r
wln(®) = { } (PR(~1)™ (g 4+ 1P () (3.8)
kE+r ,
and
p P _|_ r
w( ) (y) = Z M(y) (3.9)
k=
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Proof. We prove (3.8) first. Using the following property of r-Bell polynomials presented in
[28] (Eq. (8))

i—o Lk+T

mo(m+r
Prtm,r (Y) = Z { } yk@n,r—&-k(y)
'

in (3.7), we have

b (r ZmAtr T'(k+r) yi - _
(-1 w,ﬁlm<—y—1>:2{ } y (m ,HT / k(N e A =

which is equal to (3.8).
To prove (3.9), we use the formula

p

ypSOn,r—&-p Z

p+r
k‘PnJrk,r (v)

k:—l—r

[28] (Eq. (11)) in (3.7).
Using (3.3) in (3.8), we obtain the following result similar which is slightly different from (1.5).
Corollary 3.1. We have

(r) b wl Al O A0 NP 1 (79)
Wl ) =>4 G+ )" H =) )y + 1w, (—y = 1),
k=0j=0 \JT7 ) \k
We note that it is also possible to derive this result by applying (1.4) and (3.7) in
"2 n\ [m4r ,
enima(¥) =)D ( > { . } G+m)" o),
o0 \k/ Li+r]),
a formula given in [28] (Eq. (9)). Moreover, for » = 1, (3.9) can be written as

p+1

(14 y)wF(y =i 2 Z || wn @), (3.10)

which is also polynomial extension of (1.6). Replacing y by —y and integrating both sides with
respect to y from 0 to 1, we have

1
1 p
/1 Wy = =3 |
0 pk

Then using (2.7), we obtain the following integral representation for p-Bernoulli numbers.
Theorem 3.6. Forn > 1 and p > 0,

p+1

1
WP (Cy)dy = (—1n1P L 3.11
Ja—upue ™y = 0 B o
0
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The explicit formula (2.8) for p-Bernoulli numbers can be also deduced using this integral repre-
sentation in (3.6).

The following theorem generalizes the identities (2.8) and (2.7).

Theorem 3.7. For n,p,m > 0, we have

N mAp| (DR + 1)y,
Bnimp = (p+1) ~ P
ntmp = kzo{kﬂ?} kE+p+1

Bn,p+k- (3 12)

Forn,r > 1 and p > 0, we get

p+r
k+r
,

r(p+r+1)
(r+ D+

Bppir = (=1)* B sk (3.13)

P k=0
Proof. Firstly, we replace y with —y in (3.9), multiply both sides by (1 — y)" !
with respect to y from O to 1. The result is

, and integrate

1 1
1 p+r
)P L) (g dy = / d

y)ay y)ay.

fo- =G & L oy

0 T 0

From (3.11) this equation turns into

rp+r+1) p+r

Bn—17p+r = (_1)an+k—1,r-

D+ 1 2 [kt v

Replacing n with n + 1 in the above equation completes the proof (3.13).

Applying the same method to the identity (3.8) gives (3.12).

4. Congruences. In this section, we first consider congruences modulo a prime number ¢ for
higher order geometric polynomials. We start with two auxiliary results.

Lemma 4.1. Let q be an odd prime and y be an integer. Then we have

wq(y) =y (mod q).

Proof. From (1.1), we obtain

Since

and by (2.4)

we get the desired result

ISSN 1027-3190. Yxp. mam. ocypn., 2021, m. 73, Ne 12
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Lemma 4.2. Let g be a prime and y be an integer. Then, for all n > 1, we have

Wa+n—-1(y) = wn(y) (modq).
Proof. If q = 2, then, by (1.1), we obtain

ntl (41 n" (n
wn+1(y)—wn(y)=2{ . }k!y’“—Z{ }k!y’“

k=0

n+1 n
= (n+1)ly"*H! —i—Z ({ } {k:}) k!'y* =0 (mod 2),
since {Z} =0 and {Tf} =1 forn > 0.

Now, suppose that ¢ is an odd prime and let n > ¢ — 1. Then again by (1.1) we write

Won-1(y) — wnly) = Wil {q ! : - 1} klyk — zn: {:} kly* =
ST
k=0 k
PRGN EIIRES
() (e

wq+n71(y) —wp(y) = k'yk*

_|_

By using (2.3), we obtain

since (j,¢) =1 and 797! — 1 =0 (mod q).
If 1 <n < q—1, then we write

g+n—1 n
g+n—1 n
wq+n—1<3/) —wp(y) = § k!yk - k!yk =
k =0 k

ET e B £ (e

k=n+1

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 12
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Q
—_

k
= J

1

(kK
(—1)* ( ) 7" =1) =0 (mod g),

i

03y

since {Z} = 0 when k£ > n.

Therefore, for n > 1, wyin—1(y) = wp(y) (modg).

We note that a more general result can be found in [2] for Fubini numbers.
Theorem 4.1. Let q be an odd prime. If 1+ vy is not a multiple of q, then w
Proof. Weset p=q — 1 and n = ¢q in (3.10) to obtain

() =0 (modg).

A+ - D@ () =Y Z Worn1(y) =
k=1

q q q
= ] wq(y) + wi(y) + Werk—1(y) =
1 q 2 K]
q—1 q
= (¢ — Dwy(y) +y + Watk—1(Y).
2 Lk

By Lemmas 4.1 and 4.2, we find that

q—1
(1+y) - Dw@(y) = (—Dy+y+ ] wi(y) = 0 (mod g),
k=2

q
k
since by (2.2) [/ﬂ =0 (modgq) for 2 < k < g —1 and wi(y) is an integer when y is an integer.

The result now follows from Fermat’s and Wilson’s theorems.
It is obvious from (1.2) that if y is an integer which is a multiple of ¢, then w,(f) (y) =0 (modq),

since { kz} (r)g is an integer. We note that Theorem 4.1 is a special case which can be drawn from

the following result.
Theorem 4.2. [f y is an integer that is not a multiple of q, then u)?(f) (y) =0 (modgq) for n > 1
and r =0 (mod q).

Proof. Let r = tq for some integer t. By (1.2), we have

. " (tg+k—1\ |7
w£><y>=2k!<q . ){ }yk
k=0 k

Since

tq+k—1
k!( y ) =(tg+k—1)(tg+k—2)...(tg+ 1)(tg) =0 (mod g),

we have the result.
Theorem 4.3. [f'y is an integer such that y and 1+ y are not multiples of an odd prime q, then

w((;)l(y) =0 (modgq) for r =1 (modgq).
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RECURRENCES AND CONGRUENCES FOR HIGHER ORDER GEOMETRIC POLYNOMIALS ... 1633

Proof. Let r =1+ tq for some integer t. By (1.2), we have

ot ftg+k\ (qg—1 i
k! T
k=0 k

Since
tqg+k (tg+k)(tg+k—1)...(tg+1)  k(k—1)...1
( . ) = 7 = o = 1(mod q),
we deduce that
") 1!
wy i (y) =D ! { } y* (mod q)
k=0 k
It follows from (2.3) that
q—1
k! = (—1)*! (modq)
k
for 1 <k <q—1. Since {q 1} = 0, then we have
q—1 q—1
r Ly
’wé_)1(y) =) (-1 k=1 T (mod q),
k=0 k:O y

which implies
(1+y)w, () 1) =14+y—-14+y7=0 (modg),

and the result.

These results and their proofs are direct generalizations of the corresponding congruences for
higher order geometric numbers given in [11] (Corollary 4.2).

We conclude the study of congruences for higher order geometric polynomials by a similar result.

Theorem 4.4. If y is an integer that is not a multiple of an odd prime q, then wé?l(y) =0
(mod q) for r =0 (mod q) and w((;gl(y) = —y (modq) for r = —1 (mod q).

Proof. For a prime g and nonnegative integer m, we have

qg+m m—+1 m
UF =0 T e
k k k—q

This result was given by Howard in [17], and can be easily verified by induction on m. It then

follows that {q—gl} =0 (modgq) for k =3,4,...,q and {q—;— 1} =1 (modg).

Now, we write (1.2) as

L r+k-1\(g+1 q+1
wg’;)l(y)=2k!< ) >{k}yk:ry+r(r+l){ }y2—|—

k=0 2

+(q+1)!< . ) q“+2k' <r+k_1>{qzl}ykzry+r(r+1) (mod q),
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from which the results follow.

In the rest of this section we consider congruences for p-Bernoulli numbers. In particular, the
following theorem states a von Staudt— Clausen-type result for p-Bernoulli numbers.

Theorem 4.5. Let n be a positive integer. Then we have 4Bs, 2 = —1 (mod2) and if
(¢ — 1) | 2n for an odd prime q, then qBa, 4 = —% (mod q).

Proof. First, we take p = 2 in (2.6). This gives

2
§B2n,2 = Bop42,

or, equivalently,
4Bop 2 = 3 - 2By 9.

The result then follows from the von Staudt— Clausen theorem.
Next, let ¢ be an odd prime. Then we replace n by 2n and p by ¢ in (2.6) and obtain

! . lq
qj- 1BQn7q = Z ! ] (—1)* By =

k=0 k

q—2

Bontq + Z
k

=2

a| qa ¢ | _alg—1) 'q:
R R A e

and Bsy,+1 = 0, n > 1, the above equality turns into

q q q

By — Bont1 + Bonyg—1—

q
q—1 q k|

Since

¢ g, —91-1p +q221q(1)k3
q+1 2n,g — 5 qD2n+4+q—1 k:2q I qDB2n+k-

If (¢ —1)|2n, then (¢ —1) | 2n+ ¢ —1, so ¢Bayq—1 = —1 (modgq) by (2.6). We also have

(g—1)12n+k fork=2,3,...,g—2, 50 ¢Bap+r = 0 (mod q) again by (2.6). Noting that [Z} =0

(mod q) for 2 < k < g — 2, we observe that the sum vanishes modulo ¢. Thus,
! qg—1

——Bop g = 5 (mod q),

or, equivalently,

1
qBonq = —3 (mod q),

by Wilson’s theorem.
In the following theorem, we give a congruence for B, ,, where ¢ > 3 is a prime.
Theorem 4.6. For a prime q > 3, we have
1
qBgq = - Bgy41 (modq).
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Proof. Let ¢ > 3 be a prime. Writing n = p = ¢ in (2.7) gives

¢ p Ne B+ B g
——Bg .= - +1 2—1 — 2~
q + 1 q,9 0 q q q— 1 q q q

q q—
- [ B2q 2 Z ] q+k =
q— k=
q—3 q
—(¢—1)!Bgy1 — Bayg — Bog—2 + k:] (—1)* By,
- =2

or, equivalently,
q'Bgq = —(¢—1)!(q+1)Bg+1 — (¢ + 1) Bag—

.
(g +1D)Bg— 12)4(q —1)(q - 2)q32q_2 +(qg+1) (1] [Z] (=1)* By,

since

[ “ ]:<3q—1>q(q—1><q—2>.

qg—2 24

Now (¢ — 1)t (¢ + k) for k =2,3,...,¢ — 3. So by the von Staudt—Clausen theorem ¢B,4; = 0

(mod g). Moreover, [Z
q. The von Staudt—Clausen theorem also implies that ¢B,+1 = 0 (mod gq), ¢B2; = 0 (mod ¢) and

qB2g—2 = —1 (mod q). All these and the Wilson’s theorem give

] =0 (modq) for kK = 2,3,...,q—3, hence the sum above vanishes modulo

1
qBgq = 5 By41 + Byg (modgq).

The result readily follows by employing Adam’s theorem which states that ¢ | n implies B,, = 0
(mod g) for primes (¢ — 1) 1 n.

Finally, we give a congruence for B, ,11, where ¢ > 3 is a prime.

Theorem 4.7. For a prime q > 3, we have

qBgq+1 =0 (mod gq).

Proof. Letting n =p =g and r = 1 in (3.13) and using B,, 1 = —2B,,41, we get

q

(¢ +)!Bggt1 = (¢ +2 Z
k=

q q
q(q+2) Z [ ] "Byir + (g +2) Z ! ] (—1)* ' Bypps1.
k=0 k=0

Equation (2.7) enable us to write the first sum as

q+1

k—1
Byikt1 =
k41 !
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q
(¢ +2)¢!
+2) = ———qBy,.
q kzo Q+k (q + 1) 4Bq,q
By Theorem 4.6, we conclude that
- (¢+2)g' (1
q(q +2) Z q+k—m 1 — Byy1 ) =0 (modg),
prt q

by the von Staudt—Clausen theorem.
Now, we seperate the terms of the second sum as

q

q B q q

(g+2)> (1) 'Bypy1 = —(¢ +2) Bag — (¢ +2) Bag o+
i—o Lk qg—1 q—3

q+2 2 [q
+— Z (1) 1qByikt1 =
¢ =k

qg—1 9\ q— q+2 q 3
—(a+2)75—qBy —q+2 e quq 2+ E . (=) YgBy i1,
k=2

since [qfl} = <g) and [qf?l = <‘21)<Z>.Fork:2,3,...,q—4, (=11 (g +k=+1),

so by the von Staudt—Clausen theorem ¢B,;4+1 = 0 (mod ¢). Moreover, =0 (modgq) in the

q
k
same range, so we conclude that the sum above vanishes modulo g. The result now follows by noting

(Z) =0 (modgq), ¢B2g—2 = —1 (modq) and gBy, =0 (mod gq).
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