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OF A GENERAL INTEGRAL OPERATOR *

YHIBAJIEHTHI KPUTEPIi TA KBA3IKOH®OPMHE PO3IINPEHHSA
IHTEI'PAJIBHOT'O OIIEPATOPA 3ATAJIBHOI'O BUITIAAY

We give some sufficient conditions of analyticity and univalence for functions defined by an integral operator. Next, we
refine the result to a quasiconformal extension criterion with the help of the Becker’s method. Further, new univalence
criteria and the significant relationships with other results are given. A number of known univalence conditions would
follow upon specializing the parameters involved in main results.

3amporoOHOBaHO JOCTATHI YMOBU aHANITHYHOCTI Ta YHIBaJIEHTHOCTI s QYHKIIIH, 110 BU3HAYAIOTHCS NSSKUM iHTErPabHIM
omeparopom. Lleit pe3yabTar 3BOAUTHCS 10 KPUTEPir0 KBa3iKOH(GOPMHOTO PO3IIMPEHHS 33 A0MOMOTo0 Metoay bekepa. Jlaii
OTPUMaHO HOBI KpHTepil YHIBAICHTHOCTI Ta BKA3aHO Ba)XKIMBI 3B’SI3KM 3 IHIIMMH pe3ylbTaTaMH. TakoX 3 OCHOBHOTO
pe3yasTaTy IpH pi3HUX 3HAYEHHIX HMapaMeTpiB, SKi 3a7idHi y GpopMyTIOBaHHI IIbOTO Pe3yabTaTy, BUILTHBAIOTH IESAKi BiIOMi
YMOBH YHIBaJEHTHOCTI.

1. Introduction. Denote by U, = {z eC: |z < r}, 0 < r < 1, the disk of radius r and let
U = U;. Let A denote the class of analytic functions in the open unit disk ¢/ which satisfy the
usual normalization condition f(0) = f/(0) — 1 = 0, and let S be the subclass of A consisting
of the functions f which are univalent in U. Also, let P denote the class of functions p(z) =
=1+ Zzo:l prz" that satisfy the condition : p(z) > 0 (z € U), and 2 be a class of functions w
which are analytic in ¢/ and such that |w(z)| < 1 for z € U. These classes have been one of the
important subjects of research in geometric function theory for a long time (see [34]).

We say that a sense-preserving homeomorphism f of a plane domain G C C is k-quasi-
conformal, if f is absolutely continuous on almost all lines parallel to coordinate axes and |fz| <
< k|f.|, almost everywhere in G, where fz = 0f/0z, f, = 0f/0z and k is a real constant with
0 < k < 1. For the general defnition of quasiconformal mappings see [1].

Univalence of complex functions is an important property but, in many cases is impossible
to show directly that a certain function is univalent. For this reason, many authors found differ-
ent sufficient conditions of univalence. Two of the most important are the well-known criteria of
Becker [3] and Ahlfors [1]. Becker and Ahlfors’ works depend upon a ingenious use of the the-
ory of the Loewner chains and the generalized Loewner differential equation. Extensions of these
two criteria were given by Ruscheweyh [30], Singh and Chichra [33], Kanas and Lecko [14, 15]
and Lewandowski [18]. The recent investigations on this subject are due to Raducanu et al. [29]
and Deniz and Orhan [8, 9]. Furthermore, Pascu [24] and Pescar [25] obtained some extensions of
Becker’s univalence criterion for an integral operator, while Ovesea [23] obtained a generalization of
Ruscheweyh’s univalence criterion for an integral operator.
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In the present paper, we formulate a new criteria for univalence of the functions defined by
an integral operator GG, considered in [23], and improve obtained there results. Also, we obtain
a refinement to a quasiconformal extension criterion of the main result. In the special cases, our
univalence conditions contain the results obtained by some of the authors cited in references. Our
considerations are based on the theory of Loewner chains.

2. Loewner chains and quasiconformal extension. The method of Loewner chains will prove
to be crucial in our later consideration therefore we present a brief summary of that method.

Let £(2,t) = a1 (t)z+az(t)z?+. .., a1(t) # 0, be a function defined on U x I, where I := [0, o0)
and a;(t) is a complex-valued, locally absolutely continuous function on /. Then L£(z,t) is said to
be Loewner chain if L(z,t) has the following conditions:

(i) L(z,t) is analytic and univalent in I/ for all t € I;

(il) L(z,t) < L(z,s) forall 0 <t < s < o0,
where the symbol < stands for subordination. If a;(t) = €', then we say that £(z,t) is a standard
Loewner chain.

In order to prove main results we need the following theorem due to Pommerenke [27] (see also
[28]). This theorem is often used to find out univalency for an analytic function, apart from the
theory of Loewner chains.

Theorem 2.1 [28]. Let L(z,t) = a1(t)z+ax(t)2% +. .. be analytic in U, for all t € I. Suppose
that:

(1) L(z,t) is a locally absolutely continuous function in the interval I, and locally uniformly
with respect to Uy;

(i1) a1(t) is a complex valued continuous function on I such that ai(t) # 0, |ai(t)| — oo for

t — oo and
{ L(z,1) }
a1(t) Jier
forms a normal family of functions in Uy;
(iii) there exists an analytic function p: U x I — C satisfying Rp(z,t) > 0 forall z €U, t € 1
and

85({(;, t) :p(z,t)aﬁé?t),
Then, for each t € 1, L(-,t)has an analytic and univalent extension to the whole disk U and L(z,t)
is a Loewner chain.

The equation (2.1) is called the generalized Loewner differential equation.

The following strengthening of Theorem 2.1 leads to the method of constructing quasiconformal
extension, and is based on the result due to Becker (see [3 —5]).

Theorem 2.2 [3-5]. Suppose that L(z,t) is a Loewner chain for which p(z,t), defined in (2.1),
satisfies the condition

z zeU,, tel. 2.1

p(z,t) € U(k) == {w €C: ‘w_l‘ < k:} —

w+ 1
1+ k2 2k
:{we(C:‘w— 1—k2§1—k’2}’ 0<k<1,

forall z € U and t € 1. Then L(z,t) admits a continuous extension to U for each t € I and the
function F(z,Z) defined by
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L(z,0) for |z| <1,
F(Z,Z) = z
e Foekl) for iz

is a k-quasiconformal extension of L(z,0) to C.

Detailed information about Loewner chains and quasiconformal extension criterion can be found
in[1,2,6,7,17,26]. For a recent account of the theory we refer the reader to [12, 13]. One can also
see the following studies [10, 11, 16, 31, 32] dealing with local and boundary behavior of conformal,
quasiconformal and quasiregular mappings, as well as their generalizations.

3. Univalence criteria. The first theorem is our glimpse of the role of the generalized Loewner
chains in univalence results for an operator G, studied in [23]. The theorem formulates the condi-
tions under which such an operator is analytic and univalent.

Theorem 3.1. Let «, ¢ and s be complex numbers such that ¢ ¢ [0,00); s = a + ib, a > 0,
beR;m>0and f,g € A. If there exists a function h, analytic in U and such that h(0) = hy,
ho € C, hg ¢ (—00,0], and the inequalities

m

’a . % <o 3.1)
c m m
EREA R 2
and
—cx m/a | m/a o zg’(z) Zf”(Z) Zh/(Z):| . m m
‘ah(z)yz| +<1 2] )[(a D U Ty ey | 2a| S2a OV
hold true for all z € U, then the function
P 1/
Gal2) = |a [ ") () (3.4)
0

is analytic and univalent in U, where the principal branch is intended.
Proof. We first note that GG, is well defined and analytic in the unit disk. We rewrite G, in the

form
1/

Gal2) = |a / yot (9(“)> Fwyda|

u
0

where singularity of g(z)/z at z = 0 is removed. Because g € A, the function g(z)/z =1+ ... is
analytic in U, and then there exists a disc U,,, 0 < r1 < 1, in which g(z)/z # 0 for all z € U,,.
By changing the variable, we next have

1 1/
a—1
Guo(2) =2 oz/wc“_1 <g(zw)> I (zw)dw =242+ ...,
zZw
0

so that GG, is analytic in some neighbourhood of the origin.
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Next, we prove that there exists a real number r € (0, 1] such that the function £(-,t), defined
formally by

=|a / g M) f'(u)du—— (e™ — 1) e 2g* (e 2) f' (e 2)h(e”*2) , (3.5)
0

is analytic in U, for all ¢t € [0,00) = 1.
Denoting ¢(z) = g(z)/z we define now a function

e Sty

b1(z,t) = « / u L (u) f'(u)du= e 2% 4 ...,

0

so that ¢ can be rewritten in the form

1(2,t) = 2%pa(z, 1),

where ¢ is analytic in U,,. Hence, the function

d3(z,t) = ¢a(z,t) — % (emt — 1) efsmcb(e*“z)f’(e*Stz)h(e*Stz)

is analytic in U,, and
03(0,1) = e~ [ (14 Zho ) = Zhoe™].
c c
Now, we prove that ¢3(0,t) # 0 for all ¢ € I. It is easy to see that ¢3(0,0) = 1. Suppose that

h
ctaho holds. Since
ahg

ho ¢ (—o0, 0], this equality implies that ¢ > 0, which contradicts ¢ ¢ [0, c0). From this we conclude
that ¢3(0,t) # 0 for all ¢t € I. Therefore, there is a disk U,,, 72 € (0,r;1], in which ¢3(z,t) # 0
1/

there exists ¢y > 0 such that ¢3(0,t9) = 0. Then the equality e™° =

for all ¢ € I. Thus, we can choose a principal branch of [¢3(z,t)] analytic in U,,. By the

construction of £(z,t) and (3.5) we have that

L(z,t) = z[¢3(z,t)] Ve _ a1(t)z + az(t)2? + . ..

and, consequently, the function £(z,t) is analytic in U,,.
We note that

ay(t) = (5 s) [(1 + %ho) e ™ — %ho v

for which we consider the principal branch equal to 1 at the origin.
Since ’aa — —‘ < — is equivalent to %{m} > a = R(s), we get
o

hrn ‘al ! =
Moreover, a;(t) # 0 forall ¢ € I.
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From the analyticity of £(z,t) in U,,, it follows that there exist a number r3 such that 0 < r3 <
< 1 and a constant K = K (r3) such that

L(z,t)
al(t)
L(z,t)

al(t)

, it may be concluded that for all fixed numbers 7" > 0 and 74, 0 < r4 < r3, there exists a

‘<K, z €Uy, tel

By the Montel’s theorem [22], {
0L(z,t)

} forms a normal family in U,,. From the analyticity of
tel

constant K7 > 0 (that depends on 7" and r4) such that

0L(z,t
‘(Z)‘<K1, zeU,, te€]0,T].
ot
Therefore, the function £(z,t) is locally absolutely continuous in I, locally uniform with respect
to Uy, .
Let p: U, x I — C denote a function

p(z,t) =2

0L(z,t) [OL(z,t)
0z ot

that is, analytic in U, 0 < r < ry4, for all ¢ € I (the singularity at z = 0 is removable). If the
function
20L(z,t)  0L(z,t)

) 9z ot

£ = - 3.6

Wzt =TT 2L D) L OLG0) (3-6)
0z ot

is analytic in & x I and |w(z,t)| < 1 forall z € U and ¢t € I, then p(z,t) has an analytic extension
with positive real part in ¢/ for all ¢ € I. According to (3.6), we have

(1+s)A(z,t) —m

wE) = T A T m S
where
—ca — e Stzg'(e72)
A(Z,t) = W@ + (1 — € ) |:(Oé — 1)W+
efstzf//(efstz) efstzh/(efstz>
e e CH

for z € U and t € I. Hence, the inequality }w(z, t)| < 1 is equivalent to

m m

A(th) - % < %7

a=%R(s), zelU, tel.

Define now

B(z,t) = A(z,t) — =~

, zelU, tel.
2a

From (3.1), (3.2) and (3.8) it follows that
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co m m
‘B(Z’O)‘ - ah(z) + 2a 2a G2
and
1BO,1)| - 1 cae*mt_aa(l ety 4 m_
) a 0 2
1l fea m\ ., m —mt m
-1 <h0+2> et (5 —aa) (1| < 2 (3.10)

Since |e 52| < e =e <1 forall z€ U = {z€C: [2] <1} and t > 0, we conclude that
for each t > 0 B(z,t) is an analytic function in /. Using the maximum modulus principle it follows
that for all z € U \ {0} and each ¢ > 0 arbitrarily fixed there exists # = 6(t) € R such that

|B(z,t)| < lli‘r_nl‘B(z,t)‘ = ’B(eie,t)‘ (3.11)

forall zeU and t € I.

Denote u = ¢!, Then |u| = e, and from (3.8) we obtain
B, 1)] =
— co mfa TV (1 _ m/a) 1 ug’(u) 1 uf”(u) Uh/(u)
an(w " 2~ ) [T  Ty  h f
Since u € U, the inequality (3.3) implies that
B(e" ‘ <
Be”.0)| < -,

and from (3.9), (3.10) and (3.11), we conclude that

|B(z,1)| = )A(z,t) - ﬂ‘ <o

2a
forall z € U and t € I. Therefore, |w(z,t)| <1 forall z €U and t € I.
Since all the conditions of Theorem 2.1 are satisfied, we obtain that the function £(z,t) has
an analytic and univalent extension to the whole unit disk ¢/ for all ¢ € I. For ¢ = 0, we have
L(z,0) = Gu(z) for z € U and, therefore, the function G, () is analytic and univalent in I/.

Theorem 3.1 is proved.

Abbreviating (3.3), we can now rephrase Theorem 3.1 in a simpler form.

Theorem 3.2. Let f,g € A. Let m > 0, the complex numbers o, ¢, s and the function h be as
in Theorem 3.1. Moreover, suppose that the inequalities (3.1) and (3.2) are satisfied. If the inequality
2f"(z)  zZh'(2) m m

29 (2) _m|_m
(a—1) o0 +1+ ) + ) 2a <o (3.12)

holds true for all z € U, then the function G, defined by (3.4) is analytic and univalent in U.
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Proof. Making use of (3.2) and (3.12), we obtain

cx

h(z)

e g (1 _ |Z,m/a> [(a ) 2"(2) | zh’(z)] ' _

5 o T T TG

— (S5 ) ooy
\h(z) 2

+ (1= Jzpmre) {—a ((a BN AC S MO Zh/(z)) +m] ’ <

m/a m/a _
<™ §+(1—|Z| /)5_5,
so that the condition (3.3) is satisfied. This finishes the proof, since all the assumption of Theorem 3.1
are satisfied.
The special case of Theorem 3.1, i.e., for s = a = 1 and h(z) = —c, leads to the following
result.
Corollary3.1. Let fec Aand m > 1.1If

m—2 z2f"(2)
/

T - (1 - ‘z‘m) f (Z)

m
<z
- 2

holds for z € U, then the function f univalent in U.
Corollary 3.1 in turn implies the well-known Becker’s univalence citerion [3].
Remark 3.1. Important examples of univalence criteria may be obtained by a suitable choices of
f and g, below.
(1) Choose g1(z) = z. Then Theorem 3.1 gives analyticity and univalence of the operator
z 1/
F(z)= oz/uo‘_lf’(u)du ,

0

which was studied by Pascu [24].
(2) Setting f(z) = z in Theorem 3.1, we obtain that the operator

z 1/a

G(z) = a/go‘_l(u)du

0
is analytic and univalent in /. The operator G was introduced by Moldoveanu and Pascu [20].

(3) Taking f'(z) = @ in Theorem 3.1, we find that
z

> 1/«
(0%
H(z)= a/ g (u)du
u
0
is analytic and univalent in /. The operator H was introduced and studied by Mocanu [19].
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If we limit a range of parameter a to the case a > 1, then, applying the Theorem 3.1, we obtain
the following theorem.

Theorem 3.3. Let o, ¢ and s be complex numbers such that ¢ ¢ [0,00); s = a +ib, a > 1,
beR, m>0and f,g € A. Let the function h be as in Theorem 3.1. Moreover, suppose that the
inequalities (3.1) and (3.2) are satisfied. If the inequality

—ca 24 (2) 14 2f"(2) N zh’(z)] m

an(zy A" T A= (0= D7 7)) T h(z) | 2a

holds true for all z € U, then the function G, (z), defined by (3.4), is analytic and univalent in U.
Proof. For X € [0, 1] define the linear function

(3.13)

~ 2a

(2 N) = Me(2)+ (1 =N 1(z), zeU, tel,

where

and

24’ (2) 2f"(z)  zZh/'(2) m
l(z) =—a|(a—1 +1+ + —.
e T B (G M 1O N R
For fixed z € U and t € I, ¢(z,\) is a point of a segment with endpoints at k(z) and I(z). The
function ¢(z, \) is analytic in ¢/ for all A € [0,1] and z € U, satisfies

(2, 1)l = k()] < 5 (3.14)
and

|9(z, |2[™)| < % (3.15)

which follows from (3.2) and (3.13). If \ increases from A; = |z|™ to Ay = 1, then the point ¢(z, \)
moves on the segment whose endpoints are ¢(z, |z|™) and ¢(z,1). Because a > 1, from (3.14) and
(3.15) it follows that

‘¢(z,\z|m/“) < % zel. (3.16)

We can observe that the inequality (3.16) is just the condition (3.3), and then Theorem 3.1 now yields
that the function G, (z), defined by (3.4), is analytic and univalent in U.

Theorem 3.3 is proved.

Remark3.2. Applying Theorem 3.3 to m = 2 and the function h(z) = 1, and g(2) = f(z),

a=1/s (or 9(z) =z,a=1,c= —l, respectively), we obtain the results by Ruscheweyh [30]
(or Moldoveanu and Pascu [21], respectoiévely).

Remark3.3. Substituting 1/h instead of h with h(0) = 1 and setting g(z) = f(z), a = 1/s,
m = 2 in Theorem 3.3, we obtain the result due to Singh and Chichra [33].

Remark3.4. Setting g(z) = f(z2), s=a=1, c=—1, m=2and h(z) =
k is an analytic function with positive real part in ¢ with k£(0) = 1 in Theorem 3.3, we obtain the
result by Lewandowski [18].

Remark 3.5. For the case when m = 2 and h(0) = hy = 1 Theorems 3.1 and 3.3 reduce to the
results by Ovesea [23].

1
M , Where
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4. Quasiconformal extension criterion. In this section, we will refine the univalence condition
given in Theorem 3.1 to a quasiconformal extension criterion.

Theorem 4.1. Let o, ¢ and s be complex numbers such that ¢ ¢ [0,00), s = a + ib, a > 0,
beR, m>0; ke l0,1)and f,g € A. If there exists a function h, analytic in U, such that
h(0) = ho, ho € C, hg ¢ (—00,0], and the inequalities

m m
AR
(4.1)
CQX m km
NERFIRE]
and
—CQ | _im/a B 2q'(2) 2f"(z2) zh’(z)] m m
‘ah(Z)M +(1- 1 )[““ Do T TR | 2a SMea @2

hold true for all z € U, then the function G,(z) given by (3.4) has an K-quasiconformal extension
to C, where
k for s=1,

K=9q|s—12+ks2-1]
52 — 1| + k|s — 1|2

for s#1.

Proof. In the proof of Theorem 3.1 it has been shown that the function £(z, ), given by (3.5), is
a subordination chain in /. Applying Theorem 2.2 to the function w(z,t) given by (3.7), we obtain
that the condition

'(1 +8)A(z,t) —m

(1—=29)A(z,t)+m <i zeU, tel, 0<i<l, 4.3)

with A(z,t) defined by (3.8), implies [-quasiconformal extensibility of G (z). Lengthy, but elemen-
tary calculations, show that inequality (4.3) is equivalent to

1+12 1—12) —ib(1 — 12 2
A(z,t)—m(( +1%) + a( ) — ib( ) < Im . 4.4)
2a(1+12)+ (1 —12)(1+|s]?) 2a(1+12)+ (1 —12)(1 +|s]?)
Taking into account (4.1) and (4.2), we clearly see that
m m
— — | <k—. .
A(z,1) 2@‘ <kg- 4.5)

Consider the two disks Aj(sy,r1) and Ag(sg,r2) defined by (4.4) and (4.5), respectively, where
A(z,t) is replaced by a complex variable w. The proof is completed by showing that there exists
[ € [0,1) for which Ay is contained in A;. Equivalently Ay C A holds, if |s1 — so| + ro < 71,
that 1s,

m((1+1) +a(l—1%) —imb(1—1%) m

2a(1+12) + (1 — 12)(1 + |s]?) 2a

m 2lm

+k— <
2a = 2a(1+12) + (1 —12)(1 + |s]?)

or
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(1-)s" -1 < 2l _k (4.6)
% 2a(1+z2)+(1_z2)(1+\s|2)} T 201+ P)+ (A=) (1+][s]?)  2a ’

with the condition
2 — ﬁ >0 4.7)
20(14+12)+ (1 =12)(1+1s?) 2a = '

For the case, when k£ = 0, the condition (4.7) holds for every [, while (4.6) is satisfied for I; <1 < 1,
where

s —1P?

R

If, on the other hand, s = 1 and k£ € (0, 1), then (4.7) and (4.6) hold for k¥ <[ < 1. Assume now
s# 1 and k € (0,1). The condition (4.7) reduces to the quadratic inequality

ly

P[k(1+ |s]*) — 2ak] +4al — k[2a+ 1+ |s[’] > 0
or
ki?|s — 1% + 4al — k|s + 1> > 0. (4.8)
Therefore, we find that (4.7) (or (4.8)) holds for lo <[ < 1, where
o V4a? + k2|52 — 12 — 2a
2T kls — 12

Similarly, (4.7) may be rewritten as
(1—1%)|8% — 1| < 4al — 2ak(1+1?) — k(1 —1*)(1 + |s]*)

or
Plk|s — 1[* +15* — 1|] +4al — ks + 1> — [8* = 1| > 0,

that is, satisfied for I3 <[ < 1, where

- |s — 1% + k|5% — 1
PTIR 1 + kls — 12
We note that [5 < [3. Indeed, it is trivial that

(182 — 1| + k[s — 1)*] V/4a2 + k2|52 — 12 < [|5* — 1| + k[s — 1|*] [2a + k|5* — 1]] .
Moreover, we see at once that
[18% — 1| + k|s — 1)°] [2a + k|5* — 1|] < [|8* — 1| + k|s — 1|*] [2a + k|5* — 1]] + dak|s — 1%,

Combining the last two inequalities, we obtain

(182 — 1| + k|s — 1|*] v/4a? + k2|32 — 112 < [|3% — 1| + k[s — 1] [2a + k|5® — 1|] + 4ak|s — 1],

which is equivalent to the desired inequality Is < [3. Likewise, it is a simple matter to show that
l3 < 1, and the proof is complete, by setting K := l3. We note also, that the case £ = 0 may be
included to the last case (i.e., s # 1).

Theorem 4.1 is proved.

Several similar sufficient conditions for quasiconformal extensions as in the Theorem 4.1 can be
derived. Here we select a few example out of a large variety of possibilities. The following is based
on the Theorem 2.2.
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Theorem 4.2. Let o > 0 and f,g € A. If
7% ()7 (2) € U(K)

Sor all z € U, then the function G (z) can be extended to a k-quasiconformal automorphism of C.

Proof. Set
1/a

L(z,t) = a/gal(u)f/(u)du + (e —1)2*
0

An easy computation shows

p(z,t) = % (' 7g(2)* 1 f(2)) + <1 - eit>’

and the assertion follows by the same methods as in Theorem 4.1, applying Theorems 2.1 and 2.2.
In the same manner, by definition of the suitable Loewner chain, several univalence criterion may
by found. For example, the condition

2G!(2) N
T@(g) e U(k), e C,

which is based on the integral operator G, (z), is given by the Loewner chain

L(z,t) = 'Gy(2).
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