DOI: 10.37863/umzh.v73i2.127

UDC 512.5

J. Azami, M. Hasanzad (Univ. Mohaghegh Ardabili, Ardabil, Iran)

LOCAL COHOMOLOGY MODULES AND THEIR PROPERTIES ЛОКАЛЬНІ КОГОМОЛОГІЧНІ МОДУЛІ ТА ЇХНІ ВЛАСТИВОСТІ

Let (R, \mathfrak{m}) be a complete Noetherian local ring and let M be a generalized Cohen-Macaulay R-module of dimension $d \geq 2$. We show that

$$D\left(H_{\mathfrak{m}}^d\Big(D\big(H_{\mathfrak{m}}^d(D_{\mathfrak{m}}(M))\big)\Big)\right) \approx D_{\mathfrak{m}}(M),$$

where D = Hom(-, E) and $D_{\mathfrak{m}}(-)$ is the ideal transform functor. Also, assuming that I is a proper ideal of a local ring R, we obtain some results on the finiteness of Bass numbers, cofinitness, and cominimaxness of local cohomology modules with respect to I.

Нехай (R,\mathfrak{m}) — повне локальне нетерове кільце, а M — узагальнений R-модуль Коена — Маколея, що має розмірність $d\geq 2$. Доведено, що

$$D\left(H_{\mathfrak{m}}^d\Big(D\big(H_{\mathfrak{m}}^d(D_{\mathfrak{m}}(M))\big)\Big)\right) \approx D_{\mathfrak{m}}(M),$$

де $D = \operatorname{Hom}(-, E)$ і $D_{\mathfrak{m}}(-)$ — функтор перетворення ідеалу. Також якщо I є нетривіальним ідеалом локального кільця R, отримано деякі результати щодо фінітності чисел Басса, кофінітності та комінімаксності локальних модулів когомології відносно I.

1. Introduction. Throughout this paper, let R denote a commutative Noetherian local ring (with identity) and I an ideal of R. For an R-module M, the ith local cohomology module of M with respect to I is defined as

$$H_I^i(M) = \varinjlim_{n \ge 1} \operatorname{Ext}_R^i(R/I^n, M).$$

For more details about local cohomology modules see [2, 4]. We shall refer to D_I as the I-transform functor. Note that this functor is left exact. For an R-module M, we call $D_I(M) = \lim_{n \ge 1} \operatorname{Hom}_R(I^n, M)$ the ideal transform of M with respect to I, or, alternatively, the I-transform of M.

Let (R,\mathfrak{m}) be a Noetherian local ring and let M be a non-zero finitely generated R-module of dimension n>0. We say that M is a generalized Cohen-Macaulay R-module precisely when $H^i_I(M)$ is finitely generated for all $i\neq n$. (Such modules were called "quasi-Cohen-Macaulay modules" by P. Schenzel in [11].)

Also we shall use D to denote the exact, contravariant, R-linear functor $\operatorname{Hom}_R(-,E)$, where $E:=E(R/\mathfrak{m})$ is the injective envelope of the simple R-module R/\mathfrak{m} . For each R-module L, we denote set $\{\mathfrak{p}\in\operatorname{Ass}_R L\colon \dim R/\mathfrak{p}=\dim L\}$ by $\operatorname{Assh}_R L$. Also, for any ideal \mathfrak{b} of R, the radical of \mathfrak{b} , denoted by $\operatorname{Rad}(\mathfrak{b})$, is defined to be the set $\{x\in R\colon x^n\in\mathfrak{b} \text{ for some } n\in\mathbb{N}\}$ and we denote $\{\mathfrak{p}\in\operatorname{Spec}(R)\colon\mathfrak{p}\supseteq\mathfrak{b}\}$ by $V(\mathfrak{b})$. For any unexplained notation and terminology we refer the reader to [2,3,6].

2. Ideal transform and local cohomology.

Lemma 2.1. Let (R,\mathfrak{m}) be a Noetherian local ring and let M be an R-module of dimension $d \geq 2$. Then $D\left(H^d_{\mathfrak{m}}\left(D\left(H^d_{\mathfrak{m}}(M)\right)\right)\right) \approx D\left(H^d_{\mathfrak{m}}\left(D\left(H^d_{\mathfrak{m}}\left(D_{\mathfrak{m}}(M)\right)\right)\right)\right)$, where $D = \operatorname{Hom}(-, E)$ and $D_{\mathfrak{m}}(-)$ is the ideal transform.

Proof. Consider the exact sequence

$$0 \longrightarrow \frac{M}{\Gamma_{\mathfrak{m}}(M)} \longrightarrow D_{\mathfrak{m}}\left(\frac{M}{\Gamma_{\mathfrak{m}}(M)}\right) \longrightarrow H^{1}_{\mathfrak{m}}\left(\frac{M}{\Gamma_{\mathfrak{m}}(M)}\right) \longrightarrow 0$$

or

$$0 \longrightarrow \frac{M}{\Gamma_{\mathfrak{m}}(M)} \longrightarrow D_{\mathfrak{m}}(M) \longrightarrow H^{1}_{\mathfrak{m}}(M) \longrightarrow 0.$$

The above exact sequences induce an exact sequence

$$H^1_{\mathfrak{m}}\left(H^1_{\mathfrak{m}}(M)\right) \longrightarrow H^2_{\mathfrak{m}}\left(\frac{M}{\Gamma_{\mathfrak{m}}(M)}\right) \longrightarrow H^2_{\mathfrak{m}}(D_{\mathfrak{m}}(M)) \longrightarrow H^2_{\mathfrak{m}}\left(H^1_{\mathfrak{m}}(M)\right) \longrightarrow \dots$$

Since $H^1_{\mathfrak{m}}\left(H^1_{\mathfrak{m}}(M)\right)=H^2_{\mathfrak{m}}\left(H^1_{\mathfrak{m}}(M)\right)=0$, hence $H^2_{\mathfrak{m}}\left(\frac{M}{\Gamma_{\mathfrak{m}}(M)}\right)\approx H^2_{\mathfrak{m}}(D_{\mathfrak{m}}(M))$. Now, for all $i\geq 2$ and, in particular, for i=d, we have

$$H^i_{\mathfrak{m}}(M) = H^i_{\mathfrak{m}}\left(\frac{M}{\Gamma_{\mathfrak{m}}(M)}\right) \approx H^i_{\mathfrak{m}}(D_{\mathfrak{m}}(M)), \quad H^d_{\mathfrak{m}}(M) \approx H^d_{\mathfrak{m}}(D_{\mathfrak{m}}(M)).$$

Consequently, $D\left(H_{\mathfrak{m}}^{d}\left(D\left(H_{\mathfrak{m}}^{d}(M)\right)\right)\right) \approx D\left(H_{\mathfrak{m}}^{d}\left(D\left(H_{\mathfrak{m}}^{d}\left(D_{\mathfrak{m}}(M)\right)\right)\right)\right)$.

Lemma 2.2. Let (R,\mathfrak{m}) be a complete Noetherian local ring and let M be a generalized Cohen-Macaulay R-module of dimension $d\geq 2$. Let x_1,\ldots,x_d be an \mathfrak{m} -filter regular sequence for $D_{\mathfrak{m}}(M)$ and for $0\leq i\leq d$, we set $L_i=H^i_{\mathfrak{m}}(D_{\mathfrak{m}}(M)),\ K_i=H^i_{(x_1,\ldots,x_i)}(D_{\mathfrak{m}}(M))$ and $T_i=\left(\frac{K_i}{L_i}\right)_{T_i+1}$. Then

$$\begin{split} H^d_{\mathfrak{m}}(D(L_d)) &\approx H^{d-1}_{\mathfrak{m}} \left(D\left(\frac{K_{d-1}}{L_{d-1}}\right) \right), \\ H^{d-1}_{\mathfrak{m}}(D(K_{d-1})) &\approx H^{d-2}_{\mathfrak{m}} \left(D\left(\frac{K_{d-2}}{L_{d-2}}\right) \right). \end{split}$$

Proof. Let $N = D_{\mathfrak{m}}(M)$. Since $\Gamma_{\mathfrak{m}}(N) = H^1_{\mathfrak{m}}(N) = 0$, so N is a generalized Cohen-Macualay module of dimension $d \geq 2$. Now, let x_1, \ldots, x_d be an \mathfrak{m} -filter regular sequence for N. Consider the following exact sequences:

$$0 \longrightarrow N \longrightarrow T_0 \longrightarrow K_1 \longrightarrow 0,$$

$$0 \longrightarrow K_1 \longrightarrow T_1 \longrightarrow K_2 \longrightarrow 0,$$

$$0 \longrightarrow \frac{K_2}{L_2} \longrightarrow T_2 \longrightarrow K_3 \longrightarrow 0,$$

$$0 \longrightarrow \frac{K_{d-2}}{L_{d-2}} \longrightarrow T_{d-2} \longrightarrow K_{d-1} \longrightarrow 0,$$
$$0 \longrightarrow \frac{K_{d-1}}{L_{d-1}} \longrightarrow T_{d-1} \longrightarrow L_d \longrightarrow 0,$$

where, by [10] (Corollary 2.6), $K_2 \approx H^1_{Rx_2}(K_1)$ and also we have the following:

$$L_2 = H^2_{\mathfrak{m}}(N) \approx \Gamma_{Rx_3}\left(H^2_{Rx_1 + Rx_2}(N)\right) \approx \Gamma_{\mathfrak{m}}\left(H^2_{(x_1, x_2)}(N)\right) \approx \Gamma_{\mathfrak{m}}(K_2).$$

The above exact sequences induces the following exact sequences:

$$0 \longrightarrow D(L_d) \longrightarrow D(T_{d-1}) \longrightarrow D\left(\frac{K_{d-1}}{L_{d-1}}\right) \longrightarrow 0,$$

$$0 \longrightarrow D(K_{d-1}) \longrightarrow D(T_{d-2}) \longrightarrow D\left(\frac{K_{d-2}}{L_{d-2}}\right) \longrightarrow 0,$$

$$\vdots$$

$$0 \longrightarrow D(K_3) \longrightarrow D(T_2) \longrightarrow D\left(\frac{K_2}{L_2}\right) \longrightarrow 0,$$

$$0 \longrightarrow D(K_2) \longrightarrow D(T_1) \longrightarrow D(K_1) \longrightarrow 0,$$

$$0 \longrightarrow D(K_1) \longrightarrow D(T_0) \longrightarrow D(N) \longrightarrow 0.$$

Since for $x_{i+1} \in \mathfrak{m}$, the map $T_i \xrightarrow{x_{i+1}} T_i$ is an isomorphism, so, for all $j \geq 0$, the map

$$H^j_{\mathfrak{m}}(D(T_i)) \xrightarrow{x_{i+1}} H^j_{\mathfrak{m}}(D(T_i))$$

is an isomorphism. On the other hand, $H^j_{\mathfrak{m}}(D(T_i))$ is \mathfrak{m} -torsion and so is an Rx_{i+1} -torsion. It follows that $H^j_{\mathfrak{m}}(D(T_i))=0$ for all $j\geq 0$. Therefore, we have

$$H_{\mathfrak{m}}^{d}(D(L_{d})) \approx H_{\mathfrak{m}}^{d-1} \left(D\left(\frac{K_{d-1}}{L_{d-1}}\right) \right),$$

$$H_{\mathfrak{m}}^{d-1}(D(K_{d-1})) \approx H_{\mathfrak{m}}^{d-2} \left(D\left(\frac{K_{d-2}}{L_{d-2}}\right) \right),$$

$$H_{\mathfrak{m}}^{2}(D(K_{2})) \approx H_{\mathfrak{m}}^{1}(D(K_{1})),$$

$$H_{\mathfrak{m}}^{1}(D(K_{1})) \approx D(N).$$

$$(2.1)$$

Theorem 2.1. Let the situation and notation be as in Lemma 2.2. Then

$$D\left(H_{\mathfrak{m}}^d\left(D\left(H_{\mathfrak{m}}^d(D_{\mathfrak{m}}(M))\right)\right)\right) \approx D_{\mathfrak{m}}(M).$$

Proof. Note that, for all $2 \le i \le d-1$, the R-module L_i is of finite length and so is $D(L_i)$. Hence, for all $j \ge 1$ and $2 \le i \le d-1$, $H^j_{\mathfrak{m}}(D(L_i)) = 0$. By the notation of previous lemma, the exact sequence

$$0 \longrightarrow L_i \longrightarrow K_i \longrightarrow \frac{K_i}{L_i} \longrightarrow 0$$

induces the exact sequence

$$0 \longrightarrow D\left(\frac{K_i}{L_i}\right) \longrightarrow D(K_i) \longrightarrow D(L_i) \longrightarrow 0.$$

Now we can write

$$H_{\mathfrak{m}}^{j}\left(D\left(\frac{K_{i}}{L_{i}}\right)\right) \approx H_{\mathfrak{m}}^{j}(D(K_{i}))$$
 (2.2)

for $j \ge 2$. Finally, from (2.1) and (2.2), we have the following:

$$H^d_{\mathfrak{m}}\left(D\left(H^d_{\mathfrak{m}}(N)\right)\right) \approx H^{d-1}_{\mathfrak{m}}\left(D\left(\frac{K_{d-1}}{L_{d-1}}\right)\right) \approx H^{d-1}_{\mathfrak{m}}(K_{d-1}) \approx H^{d-2}_{\mathfrak{m}}\left(\frac{K_{d-2}}{L_{d-2}}\right) \approx$$

$$pprox H^{d-2}_{\mathfrak{m}}(K_{d-2}) pprox \cdots pprox H^2_{\mathfrak{m}}(D(K_2)) pprox H^1_{\mathfrak{m}}(D(K_1)) pprox D(N).$$

Consequently, $H_{\mathfrak{m}}^d\left(D\left(H_{\mathfrak{m}}^d(N)\right)\right) \approx D(N)$. Since R is complete, it follows that

$$D\left(H_{\mathfrak{m}}^d\left(D\left(H_{\mathfrak{m}}^d(N)\right)\right)\right) \approx D(D(N)) \approx N = D_{\mathfrak{m}}(M).$$

Corollary 2.1. Let (R, \mathfrak{m}) be a complete Noetherian local ring and let M be a generalized Cohen-Macaulay R-module of dimension $d \geq 2$. Then $(D(H_{\mathfrak{m}}^d(M)))$ is Cohen-Macaulay iff $D_{\mathfrak{m}}(M)$ is Cohen-Macaulay and this is equivalent to the following:

$$\{i \in \mathbb{N}_0 : H^i_{\mathfrak{m}}(M) \neq 0\} \subseteq \{0, 1, d\}.$$

Proof. The assertion follows immediately from above theorem.

3. Cofiniteness and cominimaxness of local cohomology modules.

Lemma 3.1. Let I be an ideal of a commutative Noetherian ring R of dimension one. Let $\mathcal{M}(R,I)_{\text{com}}$ denote the category of I-cominimax modules over R. Then $\mathcal{M}(R,I)_{\text{com}}$ forms an Abelian subcategory of the category of all R-modules. That is, if $f: M \longrightarrow N$ is an R-homomorphism of I-cominimax modules, then $\ker f$ and $\operatorname{coker} f$ are I-cominimax.

Proof. See [5] (Theorem 2.6).

Remark 3.1. For Noetherian local ring (R, \mathfrak{m}) of dimension $d \geq 1$ and proper ideal I of R, we set

$$T_1 = \{ p \in \operatorname{Assh}(R) | \operatorname{Rad}(p+I) = \mathfrak{m} \},$$

 $T_2 = \operatorname{Ass}_R(R) \setminus T_1.$

Let $0 = \bigcap_{p_i \in \mathrm{Ass}(R)} q_i$ be a minimal primary decomposition for the zero ideal of R such that q_i is

$$p_i$$
-primary. If $L_1=\bigcap_{q_i\in T_1}q_i$ and $L_2=\bigcap_{q_i\in T_2}q_i$, then $\mathrm{Ass}\,rac{R}{L_1}=T_1$ and $\mathrm{Ass}\,rac{R}{L_2}=T_2$. By [2]

$$p_i\text{-primary. If }L_1 = \bigcap_{q_i \in T_1} q_i \text{ and } L_2 = \bigcap_{q_i \in T_2} q_i, \text{ then } \operatorname{Ass} \frac{R}{L_1} = T_1 \text{ and } \operatorname{Ass} \frac{R}{L_2} = T_2. \text{ By [2]}$$
 (Theorem 8.2.1), $H_I^d\left(\frac{R}{L_2}\right) = 0$ and $H_I^i\left(\frac{R}{L_1}\right) \approx H_{\mathfrak{m}}^i\left(\frac{R}{L_1}\right)$ for all $i \geq 0$. Thus, $H_I^i\left(\frac{R}{L_1}\right)$ is

Artinian for all $i \ge 0$ and $\operatorname{cd}\left(I, \frac{R}{L_2}\right) \le d - 1$.

On the other hand, $\operatorname{Ann}(L_2) \subseteq \operatorname{Ann}(L_2M)$, so $\operatorname{Supp}(L_2M) \subseteq \operatorname{Supp}(L_2)$. Therefore, $H_I^i(L_2M) \approx$ $pprox H^i_{\mathfrak{m}}(L_2M)$ for all $i\geq 0$ and $H^i_I(L_2M)$ is Artinian for $i\geq 0$.

ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 2

Theorem 3.1. Let (R, \mathfrak{m}) be a Noetherian local ring of dimension $d \geq 1$ and I be a proper ideal of R. Then the following statements are equivalent:

- (1) the Bass-numbers of $H_I^{d-1}(R)$ are finite;
- (2) for any finitely generated R-module M, the Bass numbers of $H_I^{d-1}(M)$ are finite;
- (3) $H_I^{d-1}(R)$ is *I-cominimax*;
- (4) for any finitely generated R-module M, the R-module $H_I^{d-1}(M)$ is I-cominimax.

Proof. $1 \leftrightarrow 3$. Follows from [1] (Theorem 2.12).

 $2 \rightarrow 1$. Is clear.

 $2 \leftrightarrow 4$. If dim M = d the assertion follows from [8] (Proposition 5.1). If dim $M \le d - 1$, then $H_I^{d-1}(M)$ is Artinian.

 $1 \to 2$. Let M be a finitely generated R-module. If $\dim M < d-1$, then $H_I^{d-1}(M) = 0$ and the result follows. If $\dim M = d-1$, then $H_I^{d-1}(M)$ is Artinian and by [8] (Proposition 5.1).

Therefore we assume that $\dim M=d$. By [1] (Theorem 2.12), the Bass numbers of $H_I^{d-1}(M)$ are finite iff $\operatorname{Hom}_R\left(\frac{R}{\mathfrak{m}},H_I^{d-1}(M)\right)$ be a finitely generated. Therefore with out lose of generality, we may assume that (R,\mathfrak{m}) is a complete Noetherian local ring. By notation in Remark 3.1, from the exact sequence

$$0 \longrightarrow L_2 \longrightarrow \frac{R}{L_1} \longrightarrow \frac{R}{L_1 + L_2} \longrightarrow 0,$$

we have $\operatorname{Supp}(L_2)\subseteq\operatorname{Supp}\left(\frac{R}{L_1}\right)$ and $H^i_I(L_2)\approx H^i_{\mathfrak{m}}(L_2)$ for $i\geq 0$. Also, the exact sequence

$$0 \longrightarrow L_2 \longrightarrow R \longrightarrow \frac{R}{L_2} \longrightarrow 0$$

induces the following exact sequence:

$$H_I^{d-1}(L_2) \longrightarrow H_I^{d-1}(R) \longrightarrow H_I^{d-1}\left(\frac{R}{L_2}\right) \longrightarrow H_I^d(L_2) \longrightarrow \dots,$$

which implies that $H_I^{d-1}\left(\frac{R}{L_2}\right)$ is I-cominimax. Since $\operatorname{cd}\left(I,\frac{R}{L_2}\right) \leq d-1$, it follows that

$$H_I^{d-1}\left(\frac{R}{L_2}\right)\otimes M \approx H_I^{d-1}\left(\frac{R}{L_2}\otimes M\right) \approx H_I^{d-1}\left(\frac{M}{L_2M}\right).$$

Thus, by Lemma 3.1, $H_I^{d-1}\left(\frac{M}{L_2M}\right)$ is I-cominimax (for this we consider a free resolution of M). Also, from the exact sequence

$$0 \longrightarrow L_2 M \longrightarrow M \longrightarrow \frac{M}{L_2 M} \longrightarrow 0$$

we have the following exact sequence:

$$H_I^{d-1}(L_2M) \longrightarrow H_I^{d-1}(M) \longrightarrow H_I^{d-1}\left(\frac{M}{L_2M}\right) \longrightarrow H_I^d(L_2M).$$

By Remark 3.1, it follows that $H_I^{d-1}(M)$ is *I*-cominimax.

Lemma 3.2. Let R be a Noetherian ring, I an ideal of R and M an R-module such that $\dim M \leq 1$. Then for all $n \geq 0$ and all finitely generated R-module K, the R-module $\operatorname{Tor}_n^R(K,M)$ is I-cofinite.

Proof. See [9] (Lemma 3.3).

Lemma 3.3. Let (R, \mathfrak{m}) be a Noetherian local ring and M be a non-zero finitely generated R-module such that $\sqrt{I + \operatorname{Ann} M} = \mathfrak{m}$. Then R-module $H^n_I(M)$ is Artinian and I-cofinite, for all $n \geq 0$.

Proof. We have the following relations:

$$H^n_I(M) \simeq H^n_{I+\operatorname{Ann} M/\operatorname{Ann} M}(M) = H^n_{\mathfrak{m}/\operatorname{Ann} M}(M) \simeq H^n_{\mathfrak{m}}(M).$$

So the R-module $H^n_I(M)$ is Artinian. On the other hand, we have

$$\operatorname{Hom}_R(R/I, H_I^n(M)) \simeq \operatorname{Hom}_R(R/I, \operatorname{Hom}_R(R/\operatorname{Ann} M, H_I^n(M))) \simeq$$

 $\simeq \operatorname{Hom}_R(R/\operatorname{Ann} M + I, H_I^n(M)).$

Now, since the R-module $\operatorname{Hom}_R(R/I + \operatorname{Ann} M, H_I^n(M))$ is of finite length and $H_I^n(M)$ is Artinian, so $H_I^n(M)$ is I-cofinite by [8] (Proposition 4.1).

Remark 3.2. Let (R,\mathfrak{m}) be a Noetherian complete local ring of dimension $d\geq 1$ and let I be an ideal of R. If $\sup\{n\in\mathbb{N}_0:H^n_I(M)\neq 0\}=d$, since R is complete, then from Lichtenbaum–Hartshorn vanishing theorem, the set $A=\left\{p\in\operatorname{Ass} R|\sqrt{p+I}=\mathfrak{m}\right\}$ is non empty. Set $J=\bigcap_{i}p_i$

Also we have $m \operatorname{Ass} M/\Gamma_J(M) \subseteq \operatorname{Ass} M\backslash V(J) \subseteq \operatorname{Spec}(R)\backslash A$. Then by Lichtenbaum–Hartshorn vanishing theorem, $H^d_I(R/\Gamma_J(R)) = 0$. Since $M/\Gamma_J(M)$ is an $R/\Gamma_J(R)$ -module, it follows that $H^d_I(M/\Gamma_J(M)) = 0$.

On the other hand, $\operatorname{Ass} \Gamma_J(R) = \operatorname{Ass} R \cap V(J) = A$. So, $\sqrt{\operatorname{Ann} \Gamma_J(R) + I} = \mathfrak{m}$. In particular, by Lemma 3.3, the R-module $H^i_J(\Gamma_J(R))$ is Artinian and I-cofinite for each i.

Theorem 3.2. Let (R, \mathfrak{m}) be a Noetherian complete local ring of dimension $d \geq 1$ and let I be an ideal of R. Then the following statements are equivalent:

- (i) $H_I^{d-1}(R)$ is *I-cofinite*;
- (ii) for every finitely generated R-module M, the R-module $H_I^{d-1}(M)$ is I-cofinite.

Proof.

- $(ii)\rightarrow(i)$ is clear.
- (i) \rightarrow (ii) If dim M < d-1, then $H_I^{d-1}(M) = 0$. If dim M = d-1, then by [8] (Proposition 5.1), $H_I^{d-1}(M)$ is I-cofinite.

Now, let $\dim M = d$ and $\sup \{n \in \mathbb{N}_0 : H_I^n(M) \neq 0\} = d-1$. Then by [2] (Excercise 6.1.8), $H_I^{d-1}(M) \simeq H_I^{d-1}(R) \otimes_R M$ and by Lemma 3.1, $H_I^{d-1}(M)$ is I-cofinite. Note that, in view of [7] (Corollary 2.5), $\operatorname{Supp} H_I^{d-1}(R)$ is finite and so its dimension is at most one.

Therefore, we assume that $\sup \{n \in \mathbb{N}_0 : H_I^n(M) \neq 0\} = d$. By notation in Remark 3.2, we have the following exact sequence:

$$0 \longrightarrow \Gamma_J(R) \longrightarrow R \longrightarrow R/\Gamma_J(R) \longrightarrow 0$$
,

that induces the long exact sequence

$$\dots \longrightarrow H_I^{d-1}(\Gamma_J(R)) \xrightarrow{f} H_I^{d-1}(R) \xrightarrow{g} H_I^{d-1}(R/\Gamma_J(R)) \xrightarrow{h} H_I^d(\Gamma_J(R)) \longrightarrow \dots$$

ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 2

Note that the category of Artinian I-cofinite modules is a Serre category and so Im f is I-cofinite. Now from the exact sequence

$$0 \longrightarrow \operatorname{Im} f \longrightarrow H_I^{d-1}(R) \longrightarrow \operatorname{Im} g \longrightarrow 0,$$

we deduce that Img is I-cofinite.

Since $\operatorname{Im} h$ is also *I*-cofinite, it follows from the exact sequence

$$0 \longrightarrow \operatorname{Im} g \longrightarrow H_I^{d-1}(R/\Gamma_J(R)) \longrightarrow \operatorname{Im} h \longrightarrow 0$$

that $H_I^{d-1}(R/\Gamma_J(R))$ is I-cofinite and of dimension at most one. Now, by Lemma 3.2 and the fact that $H_I^{d-1}(M/\Gamma_J(M)) \simeq H_I^{d-1}(R/\Gamma_J(R)) \otimes_R M$, we deduce that $H_I^{d-1}(M/\Gamma_J(M))$ is I-cofinite. From the exact sequence

$$0 \longrightarrow \Gamma_J(M) \longrightarrow M \longrightarrow M/\Gamma_J(M) \longrightarrow 0$$
,

we obtain the following long exact sequence:

$$\ldots \longrightarrow H_I^{d-1}(\Gamma_J(M)) \xrightarrow{f_1} H_I^{d-1}(M) \xrightarrow{f_2} H_I^{d-1}(M/\Gamma_J(M)) \xrightarrow{f_3} H_I^d(\Gamma_J(M)) \longrightarrow \ldots$$

For all $n \geq 0$, the R-module $H_I^n(\Gamma_J(M))$ is Artinian and I-cofinite, so by the above long exact sequence, $\mathrm{Im} f_3$ and $\mathrm{Im} f_2$ are I-cofinite. Therefore, from the exact sequence

$$0 \longrightarrow \operatorname{Im} f_1 \longrightarrow H_I^{d-1}(M) \longrightarrow \operatorname{Im} f_2 \longrightarrow 0,$$

we deduce that $H_{I}^{d-1}(M)$ is also I-cofinite.

References

- 1. K. Bahmanpour, R. Naghipour, M. Sedghi, On the finiteness of Bass numbers of local cohomology modules and cominimaxness, Houston J. Math., 40, № 2, 319–337 (2014).
- 2. M. P. Brodmann, R. Y. Sharp, *Local cohomology; an algebraic introduction with geometric applications*, Cambridge Univ. Press, Cambridge (1998).
- 3. W. Bruns, J. Herzog, Cohen Macualay rings, Cambridge Stud. Adv. Math. (1997).
- 4. A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lect. Notes Math., 862, Springer, New York (1966).
- 5. Y. Irani, K. Bahmanpour, Cominimaxness of local cohomology modules for ideals of dimension one, preprint.
- 6. H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge, UK (1986).
- 7. T. Marley, *The associated primes of local cohomology modules over rings of small dimension*, Manuscripta Math., **104**, 519 525 (2001).
- 8. L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra, 285, 649-668 (2005).
- 9. R. Naghipour, K. Bahmanpour, I. Khalili Gorji, *Cofiniteness of torsion functors of cofinite modules*, Colloq. Math., 136, 221 230 (2014).
- 10. P. Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand., 92, 161-180 (2003).
- 11. P. Schenzel, Einige Anwendungen der lokalen Dualitat und verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr., 69, 227-242 (1975).

Received 04.06.18