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LOCAL COHOMOLOGY MODULES AND THEIR PROPERTIES
JOKAJIBHI KOTOMOJIOT'TYHI MOJIYJII TA IXHI BJACTUBOCTI

Let (R, m) be a complete Noetherian local ring and let M be a generalized Cohen-Macaulay R-module of dimension
d > 2. We show that

D (H;i (D(Hi(Dm(M))))) ~ D (M),

where D = Hom(—, E) and Dy (—) is the ideal transform functor. Also, assuming that I is a proper ideal of a local ring
R, we obtain some results on the finiteness of Bass numbers, cofinitness, and cominimaxness of local cohomology modules
with respect to 1.

Hexaii (R, m) — MOBHe JIOKaJIbHe HETEPOBE Kinblle, a M — y3aranbHeHunit R-Momyns KoeHa — Makostest, 1110 Ma€ po3MipHICTh
d > 2. JloBeneHo, 110

D (Hﬁ, (D(Hl‘f‘(Dm(M))))) ~ D (M),

ne D = Hom(—, E) i Dwn(—) — dyukrop neperBopenns ineainy. Takoxk skuo [ € HETPUBIAJILHUM i1€aIOM JIOKAJIHLHOTO
Kbl R, oTpuMaHO gmesiki pe3ynabTaTd Imomo ¢iHiTHOCTI umcen bacca, koQiHITHOCTI Ta KOMIHIMAKCHOCTI JIOKAaJbHUX
MOZYJIIB KOTOMOJIOTii BITHOCHO I.

1. Introduction. Throughout this paper, let R denote a commutative Noetherian local ring (with
identity) and I an ideal of R. For an R-module M, the ith local cohomology module of M with
respect to [ is defined as
Hj(M) = lim Ext(R/I", M).
n>1
For more details about local cohomology modules see [2, 4]. We shall refer to Dy as the I-

transform functor. Note that this functor is left exact. For an R-module M, we call D;(M) =

= hgl Homp(I™, M) the ideal transform of M with respect to I, or, alternatively, the [-transform
n>1
of M.

Let (R,m) be a Noetherian local ring and let M be a non-zero finitely generated R-module
of dimension n > 0. We say that M is a generalized Cohen—Macaulay R-module precisely when
H}(M ) is finitely generated for all ¢ # n. (Such modules were called “quasi-Cohen—Macaulay
modules” by P. Schenzel in [11].)

Also we shall use D to denote the exact, contravariant, R-linear functor Hompg(—, E), where
E := E(R/m) is the injective envelope of the simple R-module R/m. For each R-module L, we
denote set {p € Assp L: dim R/p = dim L} by AsshrL. Also, for any ideal b of R, the radical
of b, denoted by Rad(b), is defined to be the set {x € R: 2™ € b for some n € N} and we denote
{p € Spec(R): p 2 b} by V(b). For any unexplained notation and terminology we refer the reader
to [2, 3, 6].
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2. Ideal transform and local cohomology.

Lemma 2.1. Let (R,m) be a Noetherian local ring and let M be an R-module of dimension
d>2. Then D (HE (D (HE(M)))) ~ D (HZ (D (HZ (Dw(M))))) , where D = Hom(—, E) and
D (=) is the ideal transform.

Proof. Consider the exact sequence

= ron 2= (ron) — % () ¢

0— Fm]EJM) — D(M) — HY(M) — 0.

The above exact sequences induce an exact sequence

or

M
[ (M)

HY (HA(M)) — H? ( ) s B2 (D(M)) — H (HAGM)) — ...

M
Since Hy (Hi(M)) = H2 (Hy(M)) = 0, hence H2 ( ) ~ H2(Dw(M)). Now, for all

I (M) "
1 > 2 and, in particular, for ¢ = d, we have

M
[ (M)

Hi(M) = H], ( ) ~ Hiy(Do(M)), HE(M) ~ HE(Dy(M)).

Consequently, D (HZ (D (HE(M)))) ~ D (HZ (D (HE (Dw(M))))) .

Lemma 2.2. Let (R, m) be a complete Noetherian local ring and let M be a generalized Co-
hen—Macaulay R-module of dimension d > 2. Let x1,...,xq be an m-filter regular sequence
for Dn(M) and for 0 < i < d, we set L; = Hi(Dn(M)), K; = H! (Dw(M)) and

(x1,...,m7)
K
T, = <> . Then
Li Tit1

(L) ~ i (0 (7).

d—1
e i =i (0 (322))

Proof. Let N = Dy (M). Since I'y(N) = HL(N) =0, so N is a generalized Cohen — Macualay
module of dimension d > 2. Now, let x1,...,z4 be an m-filter regular sequence for N. Consider
the following exact sequences:

00— N —Ty— K1 —0,

00— K1 — Ty — Ky — 0,

K
0—>L—2—>T2—>K3—>0,
2

ISSN 1027-3190. Ykp. mam. scypn., 2021, m. 73, Ne 2



270 J. AZAMI, M. HASANZAD

Ky

00— =4 2—>Td_2—>Kd_1—>0,
Lq—2
Ky

0— d 1—>Td,1—>Ld—>0,

d—1

where, by [10] (Corollary 2.6), Ko ~ H}%IQ (K1) and also we have the following:

Ly = H2(N) ~ Thay (H2,, gy (N)) & Ty (H(me)(N)) ~ T ().

The above exact sequences induces the following exact sequences:

Ky
0 — D(Lyg) — D(Ty_1) — D (Ld 1) — 0,
d—1

Ky
0— D(Kyq_1) — D(Ty_5) — D ( d 2) —0,

0 — D(K3) — D(1T3) — D <> — 0,

0 — D(K3) — D(T1) — D(K;) — 0,
0 — D(K;) — D(Ty) — D(N) — 0.

Since for x;411 € m, the map 7T; RAAEN T; is an isomorphism, so, for all j > 0, the map

Hi(D(T;)) == HL(D(T;))

is an isomorphism. On the other hand, H},(D(T;)) is m-torsion and so is an Rz, -torsion. It
follows that Hy,(D(T;)) = 0 for all j > 0. Therefore, we have

i) ~ i (0 (F21),

HY Y (D(Kq-1)) = HE? <D <ﬁ_§)> : (2.1)
H2(D(K3)) ~ Hy(D(K1)),
Hy(D(K1)) =~ D(N).

Theorem 2.1. Let the situation and notation be as in Lemma 2.2. Then

D (Hg (D (Hg(Dm(M)))» ~ Du(M).

Proof. Note that, for all 2 < i < d — 1, the R-module L; is of finite length and so is D(L;).
Hence, for all j > 1 and 2 <4 < d — 1, Hj(D(L;)) = 0. By the notation of previous lemma, the
exact sequence
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K

0
L.

0 — L, — K;, —

induces the exact sequence
0—D <IL(;> — D(K;) — D(L;) — 0.
Now we can write
HY, (D (f)) ~ Hi(D(K;)) (2.2)
i
for j > 2. Finally, from (2.1) and (2.2), we have the following:

_ Ky _ (K
i <D (H;i(N))) ~ {1 (D (Ldl>> ~ HIN(Kyp) ~ Hi2 (Ld 2) o
d—1 d—2

~ Hi ?(Kg-2) ~ -+ ~ HA(D(K>)) ~ Hy(D(K1)) = D(N).
Consequently, HZ (D (HZ(N))) ~ D(N). Since R is complete, it follows that
D (Hgi (D <H$(N)))) ~ D(D(N)) ~ N = Du(M).

Corollary2.1. Let (R, m) be a complete Noetherian local ring and let M be a generalized Co-
hen—Macaulay R-module of dimension d > 2. Then (D(HZ(M)) is Cohen—Macaulay iff Dy (M)
is Cohen—Macaulay and this is equivalent to the following:

{ieNo: HL(M) # 0} € {0,1,d}.

Proof. The assertion follows immediately from above theorem.

3. Cofiniteness and cominimaxness of local cohomology modules.

Lemma 3.1. Let I be an ideal of a commutative Noetherian ring R of dimension one. Let
M(R, I)com denote the category of I-cominimax modules over R. Then M(R,I)com forms an
Abelian subcategory of the category of all R-modules. That is, if f: M — N is an R-homomorphism
of I-cominimax modules, then ker f and cokerf are I-cominimax.

Proof. See [5] (Theorem 2.6).

Remark3.1. For Noetherian local ring (R, m) of dimension d > 1 and proper ideal I of R,
we set

T, = {p € Assh(R)|Rad(p + I) = m},
TQ = ASSR(R)\Tl.

Let 0 = (1 ¢ be a minimal primary decomposition for the zero ideal of R such that g; is
pi€Ass(R)
. R R
p;-primary. If Ly = () ¢ and Ly = () ¢, then Ass— = T} and Ass— = Ts. By [2]
qi€Ty ;€12 Ly Lo

R (R (R (R
(Theorem 8.2.1), Hfl — | =0and H; | — | =~ Hy, | — | forall ¢« > 0. Thus, H} is
Ly Ly Ly Ly

Artinian for all 7 > 0 and cd (I, f) <d-1.
2

On the other hand, Ann(L2) € Ann(LoM), so Supp(L2M) C Supp(Ls). Therefore, Hi(LoM) =
~ Hi(LyM) forall i > 0 and Hi(LyM) is Artinian for i > 0.
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Theorem 3.1. Let (R, m) be a Noetherian local ring of dimension d > 1 and I be a proper
ideal of R. Then the following statements are equivalent:

(1) the Bass-numbers of H}i_l(R) are finite;

(2) for any finitely generated R-module M, the Bass numbers of Hf-lfl(M) are finite;

(3) H{Y(R) is I-cominimax;

(4) for any finitely generated R-module M, the R-module H;lil(M) is I-cominimax.

Proof. 1 < 3. Follows from [1] (Theorem 2.12).

2 — 1. Is clear.

2 <> 4. If dim M = d the assertion follows from [8] (Proposition 5.1). If dim M < d — 1, then
H{™'(M) is Artinian.

1 — 2. Let M be a finitely generated R-module. If dim M < d — 1, then H}l’l(M ) =0 and
the result follows. If dim M = d — 1, then H;l_l(M ) is Artinian and by [8] (Proposition 5.1).

Therefore we assume that dim M = d. By [1] (Theorem 2.12), the Bass numbers of H}i_l(M )

R
are finite iff Hompg (m’ H}l_l(M )) be a finitely generated. Therefore with out lose of generality,

we may assume that (R, m) is a complete Noetherian local ring. By notation in Remark 3.1, from
the exact sequence

0—>L2—>£—> r

s,
Ly Ly + Lo

R . ,
we have Supp(Lsy) C Supp <L> and H}(L2) ~ H},(L2) for i > 0. Also, the exact sequence
1

R
0—>L2—>R—>L——>0
2

induces the following exact sequence:

- _ (R
HI™Y(Ly) — HITYR) — HI <L2> — HY(Ly) — ...,

which implies that H}i_l (5) is I-cominimax. Since cd (I , ?) < d —1, it follows that
2 2

R R M
Hi™? (L2> ® M~ H{™! (L2 ® M> ~ H{™! (L2M> :

M
Thus, by Lemma 3.1, H;l_l <L 7
2

Also, from the exact sequence

> is I-cominimax (for this we consider a free resolution of M).

0— LoM — M — —0

LoM
we have the following exact sequence:

M
LoM

HI7YLoM) — HI7H (M) — HE? ( ) — HY(LyM).

By Remark 3.1, it follows that H¢~'(M) is I-cominimax.
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Lemma 3.2. Let R be a Noetherian ring, 1 an ideal of R and M an R-module such that
dim M < 1. Then for all n > 0 and all finitely generated R-module K, the R-module TorZ (K, M)
is I-cofinite.

Proof. See [9] (Lemma 3.3).

Lemma 3.3. Let (R,m) be a Noetherian local ring and M be a non-zero finitely generated
R-module such that /I + Ann M = m. Then R-module H}' (M) is Artinian and I-cofinite, for all
n > 0.

Proof. We have the following relations:

H?(M> = H?JrAnnM/AnnM(M) = Hn/AnnM(M) = HQ(M>

m

So the R-module H}' (M) is Artinian. On the other hand, we have
Homp(R/I,H} (M)) ~ Hompg (R/I,Hompg (R/Ann M, H} (M))) ~
~ Homp (R/Ann M + I, H} (M)).

Now, since the R-module Homp (R/I + Ann M, H}'(M)) is of finite length and H}' (M) is Arti-
nian, so H} (M) is I-cofinite by [8] (Proposition 4.1).

Remark3.2. Let (R, m) be a Noetherian complete local ring of dimension d > 1 and let I be
an ideal of R. If sup{n € No: H}'(M) # 0} = d, since R is complete, then from Lichtenbaum —

Hartshorn vanishing theorem, the set A = {p €AssR|Vp+1= m} is non empty. Set J = [ p.
peEA
Also we have m Ass M /T (M) C Ass M\V (J) C Spec(R)\A. Then by Lichtenbaum — Hartshorn

vanishing theorem, H¢(R/T ;(R)) = 0. Since M/T';(M) is an R/T ;(R)-module, it follows that
H{(M/T ;(M)) = 0.

On the other hand, AssT';(R) = Ass RNV (J) = A. So, /AnnT';(R) 4+ I = m. In particular,
by Lemma 3.3, the R-module H%(I';(R)) is Artinian and I-cofinite for each i.

Theorem 3.2. Let (R, m) be a Noetherian complete local ring of dimension d > 1 and let I be
an ideal of R. Then the following statements are equivalent:

(i) H{Y(R) is I-cofinite;

(1) for every finitely generated R-module M, the R-module H;lil(M ) is I-cofinite.

Proof.

(i1)—(i) is clear.

(1)— (i) Ifdim M < d—1, then Hj'-lil(M) = 0. If dim M = d—1, then by [8] (Proposition 5.1),
H{™Y(M) is I-cofinite.

Now, let dim M = d and sup {n € No: H} (M) # O} = d — 1. Then by [2] (Excercise 6.1.8),
HI™Y(M) ~ H(R) ®g M and by Lemma 3.1, H{~!(M) is I-cofinite. Note that, in view of [7]
(Corollary 2.5), Supp H;l_l(R) is finite and so its dimension is at most one.

Therefore, we assume that sup {n € No: H}'(M) # 0} = d. By notation in Remark 3.2, we
have the following exact sequence:

0—Ty(R)— R— R/Tj(R) — 0,
that induces the long exact sequence
_ _ _ h
o HIYD(R)) L HOY(R) % HEY(R/T(R)) -5 HIT(R) — ...
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Note that the category of Artinian [-cofinite modules is a Serre category and so Imf is I-cofinite.
Now from the exact sequence

0—Imf— HI"Y(R) — Img — 0,

we deduce that Img is [-cofinite.
Since Im A is also I-cofinite, it follows from the exact sequence

0— Img — HIY(R/T(R)) — Imh — 0

that H}l_l(R/ I';(R)) is I-cofinite and of dimension at most one. Now, by Lemma 3.2 and the fact
that H{~'(M/T;(M)) ~ HI Y (R/T ;(R)) ®g M, we deduce that H¢*(M/T ;(M)) is I-cofinite.
From the exact sequence

0 —Ty;M)— M — M/T;(M)—0,
we obtain the following long exact sequence:
s HOND (M) L HON () L2 HON (T (M) L BT, (M) —

For all n > 0, the R-module H}(I';(M)) is Artinian and [-cofinite, so by the above long exact
sequence, Im f3 and Imfo are I-cofinite. Therefore, from the exact sequence

0 — Imfy — HEHM) — Tmfy — 0,
we deduce that H;l_l(M ) is also I-cofinite.
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