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EMBEDDING THEOREMS AND MAXIMAL SUBSEMIGROUPS OF SOME
LINEAR TRANSFORMATION SEMIGROUPS WITH RESTRICTED RANGE

TEOPEMM ITPO BKVIAIEHHA TA MAKCUMAJIBHI ITIITHAIIIBI'PYIIN
JEAKUX HAMIBIPYII JIHIMHUX NEPETBOPEHD
3 OBMEXEHUM OBPA3OM

Let V be a vector space over a field and let 7'(V') denote the semigroup of all linear transformations from V' into V. For
a fixed subspace W of V, let F(V,W) be the subsemigroup of T(V') consisting of all linear transformations « from
V into W such that Va C Wa. In this paper, we prove that any regular semigroup S can be embedded in F(V, W)
with dim(V) = |S*| and dim(W) = |S|, and determine all the maximal subsemigroups of F(V, W) when W is a finite
dimensional subspace of V' over a finite field.

Hexait V' — BektopHmit pocTip Han aeskuM monem, a 7'(V) — HamiBrpyma Beix HiHiHHEX mepetBopenb 3 V' y V. s
dikcosanoro nignpocropy W npocropy V wexait F'(V, W) — nignanierpyna Hanisrpynu 7°(V'), sika cKIagaeTses 3 ycix
niHiftHMX nepetBopes o 3 V' y W takux, mo Va C Wa. JloBeneHo, mo Oyap-sKy peryispHy HaIiBrpyImy S MOXKHa
snactu y F(V,W) 3 dim(V) = |S*| i dim(W) = |S|, Ta BusHaueHo BCi MakcuManbHi minHanisrpymu 3 F(V, W),
Ko W — ckiH4eHHOBHMIpHUI mianpocTip V' Hax CKiHUCHHUM IOJIEM.

1. Introduction. Let 7'(X) be the set of all full transformations from a nonempty set X into itself.
It is well-known that 7'(X) is a regular semigroup under composition of functions. The properties of
T'(X) have been widely studied. In 1959, Hall (see [5], Theorem 1.10) showed that every semigroup
S can be embedded in a full transformation semigroup 7'(S') by using the extended right regular
representation of S. In [3] (Theorem 8.5) showed that any right cancellative, right simple semigroup
S without idempotents can be embedded in a Bear — Levi semigroup of type (p, p) where p = |S|. In
[2] (Theorem 1.20) proved that any inverse semigroup .S can be embedded in the symmetric inverse
semigroup I(S) of all injective partial transformations of S.

If X = {1,2,...,n} with n € Z", we write T, instead of T'(X). In 1966 Bayramov [1]
characterized all the maximal subsemigroups of 7},, which is either the union of a maximal subgroup
of the symmetric group S,, and 7}, \ S,, or it is the union of the set of all transformations « € T, with
|Xa| < n—2and S,. Later in 2002, You [20] determined all the maximal regular subsemigroups
of all ideals of T},. In 2004, Yang and Yang [19] completely described the maximal subsemigroups
of ideals of T},. And in 2015, East, Michell and Péresse [4] classified the maximal subsemigroups of
T(X) when X is an infinite set containing certain subgroups of the symmetric group on X.

For a fixed nonempty subset Y of a set X, let

T(X,Y)={aeT(X): Xa C Y},

where X o denotes the image of . Then T'(X,Y) is a subsemigroup of 7'(X). In 1975, Symons
[18] described all the automorphisms of 7'(X, Y'). He also determined when 7'( X, Y7) is isomorphic
to T'(X2,Y2). In 2005, Nenthein, Youngkhong and Kemprasit [8] characterized the regular elements
of T(X,Y). In 2008, Sanwong and Sommanee [12] defined
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FX,)Y)={aeT(X,Y): XaCYa}

and showed that F'(X,Y") is the largest regular subsemigroup of 7'(X,Y"). This semigroup plays a
crucial role in characterization of Green’s relations on 7'(X,Y’). Moreover, they determined a class
of maximal inverse subsemigroups of T'(X,Y"). In 2011, Sanwong [11] described Green’s relations,
ideals and all the maximal regular subsemigroups of F'(X,Y’). Also, the author proved that every
regular semigroup S can be embedded in F(S!,S). Later in 2013, Sommanee and Sanwong [15]
computed the rank of F(X,Y) when X is a finite set. Furthermore, they obtained the rank and
idempotent rank of its ideals. Recently in 2018, Sommanee [13] described the maximal inverse
subsemigroups of F'(X,Y") and completely determined all the maximal regular subsemigroups of its
ideals.

For a vector space V' over a field F, let T'(V') be the set of all linear transformations from V'
into V. It is known that T'(V') is a regular semigroup under composition of functions (see [2, p. 57]).
In 2004, Mendes-Gongalves and Sullivan [7] (Theorem 3.12) proved that any right simple, right
cancellative semigroup S without idempotents can be embedded in some GS(m,m), the linear
Baer—Levi semigroup on V. After that in 2012, Sullivan [16] (Theorem 3) proved that any semigroup
S can be embedded in T'(V) for some vector space V with dimension |S%|.

For a fixed subspace W of a vector space V, let

T(V,W)={aeT(V): Va C W}.

Then T'(V, W) is a subsemigroup of 7'(V'). In 2007, Nenthein and Kemprasit [9] proved that o €
€ T(V,W) is a regular element of T'(V, W) if and only if Va = Wa. As a consequence, they
showed that T'(V, W) is regular if and only if either V' =W or W = {0}. Later in 2008, Sullivan
[17] proved that the set

F(V,W)={aeT(V,W): Va C Wa},

consisting of all regular elements in 7'(V, W), is the largest regular subsemigroup of T'(V, W). He
characterized Green’s relations on 7'(V, W) and showed that the semigroup F(V, W) is always a
right ideal of 7'(V, W). The author also described all the ideals of F'(V,W) and T'(V,W). Re-
cently in 2017, Sommanee and Sangkhanan [14] determined the maximal regular subsemigroups of
F(V,W) when W is a finite dimensional subspace of V' over a finite field F. Moreover, they com-
puted the rank and the idempotent rank of F'(V,W) when V is a finite dimensional vector space
over a finite field F.

Here, we prove that any regular semigroup S can be embedded in F(V, W) where dim(V) =
= |S!| and dim(W) = |S/|, and determine all the maximal subsemigroups of F'(V, W) when W is
a finite dimensional subspace of V' over a finite field F.

2. Preliminaries and notations. Let S be a semigroup. We call a € S a regular element if
a = axa for some x € S, and S is said to be a regular semigroup if every element of S is regular.
An element e € S is called an idempotent if €2 = e. A nonempty subset A of S is said to be an
ideal if SA C A and AS C A. A proper (regular) subsemigroup M of S is a maximal (regular)
subsemigroup of S if, whenever M C T C S for some a (regular) subsemigroup 7" of S, then
M=TorT=S5.
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1716 W. SOMMANEE

Let a and b be elements of a semigroup S. The Green’s relations £, R, H and J on S are
defined as follows: alb if S'a = S'b, aRbif aS' = bS', H = LN R and aJb if S'aS! = S1bS?,
where S! is a semigroup S with the identity adjoined, if necessary. For each a € S, we denote L-
class, R-class, H-class and J -class containing a by L,, Ry, H, and J,, respectively.

A semigroup S is said to be embedded in a semigroup T if there exists an injective function ¢ :
S — T such that (zy)p = (z¢)(yp) forall z,y € S.

Let V' be a vector spaces over a field F. A function o: V — V is a linear transformation on V
if

(u+v)a =ua+va and (au)a = a(u)

for all vectors u,v € V and scalar a € F. The set 7(V) of all linear transformations from V'
into V' is a semigroup with respect to the composition operation. This semigroup is called a linear
transformation semigroup. We denote by Oy the zero map in 7'(V'), that is, Oy : V — {0}.

For a fixed subspace W of a vector space V, let

T(V,W)={aeT(V): Va CW}and F(V,W) = {a € T(V,W): Va C Wa}.

Then T'(V,W) is a subsemigroup of T'(V') and F(V,W) is the largest regular subsemigroup of
T(V,W).

For any set A, |A| means the cardinality of the set A.

In this paper, a subspace of a vector space V' over a field F' generated by a linearly independent
subset {e;: i € I} of V is denoted by (e;). If we write U = (e;) when U is a subspace of V/ it
means the set {e;: i € I} is a basis of U with dim(U) = |I|. Let {u;: ¢ € I} be a subset of V.
Then the notation ) a;u; means the linear combination

Qi Uiy + QUG + .00+ Qg Uy,

for some n € ZT, w; , wiy, ..., u;, € {u;: i € I} and scalars a;,, a;y, - .., a;, € F.

A construction of a map « € T'(V'), we first choose a basis {e;: i € I} for a vector space V
and a subset {u;: i € I} of V, and then let e;a = wu; for each i € I and extending this action
by linearity to the whole of V. To shorten this process, we simply say, given {e;: i € I} and {a;:
i € I} within the context. Then av € T'(V') is defined by letting

= ()

Let S1,.59,...,5, be subspaces of a vector space V where n > 2. We call V' the internal direct
sum of S1,S52,...,5,, and we write

V=5165&...5,,

ifV=5+S+...+S, ={s1+s2+...+sp:8€8,1<i<n}and S;N(S1+...+Si—1+
+Siv1+...+S,) = {0} forall 1 <i<n.We note that if U is a subspace of V, then there exists
a subspace 17" of V such that V = U & T (see [10], Theorem 1.4).

The external direct sum of a family of rings {R;: ¢ € I}, denoted Zie[ R;, is the set of all

sequences (r;) where r; € R; and at most finitely many r; are non-zero.
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3. Embedding theorems. In 2011, Sanwong proved that every regular semigroup S can be
embedded in F(S!,S) (see [11], Theorem 3). Here, we prove a linear version of that result.

Remark 3.1 ([6, p. 182], Remark (c)). Let X be any nonempty set and R a ring with identity.
Let V' be the external direct sum ) R; with the copies of R indexed by the set X. Then V is a free
R-module on the set X such that X is a basis of V. In particular, if R is a field, then V =) R; is
a vector space over R with dimension | X]|.

Lemma 3.1 ([16], Theorem 3). Any semigroup S can be embedded in T'(U) where U = F;
is the external direct sum of the copies of a field F indexed by the semigroup S' (U is a vector
space with dimension |S*|).

Theorem 3.1. Let W be a subspace of a vector space V. Then T(W) can be embedded in
F(V,W).

Proof. 1t is clear that if V = W, then T(W) = F(V,V) = F(V,W) and so T(W) = F(V,W).
But, when W = {0}, we see that T (W) = {Ow } and F(V, W) = {Oy }. Thus, they are isomorphic.

Now, suppose that {0} # W & V. Let W = (w;) and V = (w;) @ (v;) for some subspace (v;)
of V. Then we have {w;: i € I} # @& # {vj: j € J}. Let a € T(W) and write

@ = ()
“=(un 5):

We obtain Va/ C Wa/, which implies that o/ € F(V,W). For any element w € W, we can write
w =Y a;w; and so wa' = (3 a;w;)a’ =Y ai(wiad’) = Zal(wZ ) = (O ajwi)a = wa. Also, if
a,3 € T(W) and w € W, then wa € W and thus (wa)3’ = (wa) 8. We define

Define o € T(V, W) as follows:

O:T(W)— F(V,IW) by a® = o forall « € T(W).

We prove that ® is a monomorphism. Let o, 8 € T(W). If a® = P, then o/ = f'. For w € W,
w =Y a;w; and wa = (Eaiwi)a = > aj(wia) =Y ai(wicd) = ai(wif) = > ai(w;B) =
= (Zaiwi)ﬁ = wf. So, a = [ and hence P is 1n]ect1ve Let v € V. Then we can write v =
= 2 biwi+3 cjuj and v(a/B') = (3 biwi+3- cjuy) (o B') = 3D bi(wi(a'B) +3 ¢j(v(a'B)) =
= Tbi((wia)B) + Xy (1j0)8) = X bilwia)§ + 3 ¢,(08) = 3 bi(wia) + Y. ¢5(0) =
= Y bi(wi(ap)) + X ¢i(0) = Ybi(wi(apf)) + X cj(vi(aB)) = (X biwi + X cjvy)(af) =
= v(af)’. Whence, (af) = o', it follows that (a8)® = (a®)(SP). Thus, ® is a monomorphism
and therefore 7'(W') can be embedded in F'(V, ).

Theorem 3.1 is proved.

By Lemma 3.1, any semigroup S can be embedded in 7'(W) for some vector space W with
dimension |S|. And by Theorem 3.1, T(W) can be embedded in F(V, W) when V is any vector
space which contains W. So, we have the following corollary.

Corollary3.1. Any semigroup S can be embedded in F(V, W) for some subspace W of V with
dim(W) = |SY|, where V is any vector space which contains W.

Lemma 3.2. Let S be any semigroup and x € S. We write S' = {a;: i € I} and define p, :
St — S by aip, = a;w for all i € I. Let F be any field and V the external direct sum . F; with
the copies of F indexed by S*. Then:

(1) ps can be extended by linearity to an element of T'(V),
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(2) the mapping p: S — T(V) is given by xp = p, for all x € S, is a monomorphism.

Proof. See the proof as given in [16] (Theorem 3).

Lemma 3.3. Let Y F; be the external direct sum of the copies of a field F' indexed by some set
I with |I| > 2. We fix k € I and let J = I\ {k}. Let G be the external direct sum of {0} U {Fj:

Jj € J}, where 0 € Fi, = F, and ), F} is the external direct sum of the copies of a field F indexed
by the set J. Then:

(1) G is a subspace of »_ Fj;,

(2) > F; is isomorphic to G.

Proof. (1) It is easy to verify that G is a subspace of > F;.

(2) For each (r;) € > Fj, we construct an element (r}) in G by

(2

) 0, ifi=k,
’)". =
! rj, ifieI\{k}=J.

Define ¢: Y F; — G by (1) = (r}) for all (rj) € > Fj. Then ¢ is bijective. Let (r}),(s;) €
€ > Fj and ¢ € F. It is routine to show [(r) + (s;)]¢ = ()¢ + (sj)¢ and [e(r})]e = c[(15)¢].
Thus, ¢ is an isomorphism and so ) F; = G.

Lemma 3.3 is proved.

Theorem 3.2. Any regular semigroup S can be embedded in F(V,W) for some subspace W
of a vector space V, where dim(V) = |S'| and dim(W) = |S|.

Proof. Assume that S is a regular semigroup and let V' be the external direct sum > F; with
the copies of a field F' indexed by S*. We note that V = (S!) and dim(V') = |S*| by Remark 3.1.
There are two cases to consider.

Casel: 1 € S. Then we have S! = S. Let W = V. It follows from Lemma 3.1 that S can be
embedded in T(V) = F(V, W) such that dim(W) = dim(V) = |St| = |S]|.

Case2: 1 ¢ S. This implies that |S1| > 2 and S = S'\ {1}. Let G be the external direct sum
of {0} U{Fj:j € S}, where 0 € F} = F = Fj for all j € S. It follows from Lemma 3.3 that
> F; =2 G CV, where ) Fj is the external direct sum of {F};: j € S} with the copies of the field
F indexed by S. Here, we let W =} F;. Thus, we have W = ) F; = (S), dim(WW) = |S| and
W C V in the sense of embedding. Now, we write S1 = {a;: i € I}. For each z € S, define p, :
St — S by a;p, = a;x for all i € I. Then by Lemma 3.2 (1), we obtain p, € T(V) and it is clear
that a;p, = a;x € S for all 4 € I. Notice that there exists ¢ € S such that x = xtx since S is regular.
We prove p, € F(V,W). Let vp, € Vp, forsomev € V = <Sl> . So, we can write v = » _ d;a; and
vpy = >, di(a;ps) € (S) = W. Whence, Vp, C W. Next, we prove Vp, C Wp,. If v => d;a;
for some a; € S, then vp, = (Z diai)pz € (S) pr = Wp,. If v =d-1 for some scalar d € F, then
vpe = (d- Vps = d(1p,) = do = d(wtz) = d((xt)z) = d((at)ps) = (d(at))ps € (S) pe = Wps.
Hence, Vp, C Wp, and so p, € F(V,W). We define p: S — F(V,W) by zp = p, forall z € S.
Then by Lemma 3.2(2), we have p is a monomorphism. Therefore, we conclude that S can be
embedded in F'(V,W).

Theorem 3.2 is proved.

4. Maximal subsemigroups. In 2017, Sommanee and Sangkhanan determined the maximal
regular subsemigroups of F'(V, W), when W is a finite dimensional subspace of a vector space V'
over a finite field F' (see [14], Theorem 4.9).
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In general, if S is a regular semigroup and 7' is a maximal regular subsemigroup of S, then
T may not be a maximal subsemigroup of S (see [19, 20], Theorem 2). Here, we prove that the
maximal subsemigroups and the maximal regular subsemigroups of F'(V, W) coincide.

We begin by recalling some notations and results from [14] that will be useful in this section.

Lemma 4.1 ([14], Lemma 2.3). Let W be a subspace of a vector space V and o, 3 € F(V,W).
Then:

(1) aJp ifand only if dim(Va) = dim(Vp),

(2) aHp ifand only if Va =V and ker o = ker 3,
where kera = {v € V: va = 0}.

Lemma 4.2 ([14], Theorem 2.4). Let W be a subspace of a vector space V. Then the ideals of
F(V,W) are precisely the sets Qi = {a € F(V,W): dim(Va) < k}, where 0 < k < dim(W).

We note that Q) is a regular subsemigroup of F'(V, W) (see [14], Lemma 2.5).

Let n > 0 be an integer and W an n-dimensional subspace of a vector space V' over a finite
field F.

For 0 < k < n = dim(W), define J(k) = {a € F(V,W): dim(Va) = k}. Then J(k) is a
J-class of F(V,W). Let Q, be defined as in Lemma 4.2. We have Q = J(0) U J(1)U...UJ(k)
and Q, = F(V, ).

Remark4.1. The following facts are directly obtained from the definitions of J(k) and Qy:

(1) Qo = J(0) contains exactly one element Oy, the zero map;

(2) foreach aw € J(n), Va =W since Va C W and dim(Va) = n = dim(W) is finite.

We will use the notation GL(U) as a set of all automorphisms of a vector space U over a field
F. 1t is well-known that GL(U) is a group under the composition of functions.

Lemma 4.3 ([14], Lemma 3.2). Let ¢ € F(V,W) be an idempotent. Then H. = GL(Ve).

From now on, we suppose that n > 1 and let E(J(n)) = {e,: p € P} be the set of all
idempotents in J(n). Then we have

J(n) = U H,

peP
is a disjoint union of groups all of which are isomorphic (see [14], Lemma 3.3). Moreover, J(n) is
a regular subsemigroup of F'(V, W) (see [14], Lemma 3.6).

Lemma 4.4 ([14], Lemma 4.1). J(n—1) C J(n)aJ(n) forall « € J(n —1).

Lemma 4.5 ([14], Theorem 4.2). For n > 2, the set Qn—o U J(n) is a maximal regular sub-
semigroup of F(V,W).

For each ¢, € E(J(n)), H., = GL(Vep) = GL(W) by Lemma 4.3 and Remark 4.1(2). We
let ®,: H., — GL(W) be an isomorphism and U a fixed maximal subgroup of GL(W). For each
p € P, we define

M, =U®,".
Then M), is a maximal subgroup of H., for all p € P (for details, see [14, p. 409]).
Lemma 4.6 ([14], Lemma 4.3). Let M, be defined as above and M = Upep M,. Then M is

a maximal regular subsemigroup of J(n).

Lemma 4.7 ([14], Theorem 4.4). Let M be as in Lemma 4.6. Then QQ,—1 U M is a maximal
regular subsemigroup of F(V,W).
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Lemma 4.8 ([14], Lemma 4.6). T is a maximal regular subsemigroup of J(n) if and only if
there is a maximal subgroup U of GL(W) such that T = Upep M, with M, = U@;l, where P,
is defined as previous Lemma 4.6 (p € P).

Recall that if A is a subset of a semigroup S, then (A) denotes the subsemigroup of S generated
by A.

Lemma 4.9 ([14], Lemma 4.7). For 0 <k <n—1, Qr = (J(k)).

To prove the main results, we prepare the following two lemmas.

Lemma 4.10. Every subsemigroup of J(n) is a regular subsemigroup of J(n).

Proof. Assume that T is a subsemigroup of J(n) = U p H., LetR={rec P:TNH,, # @}
P

and T, = TNH,, forall r € R. Itis clear that T = UreR T,. Since T, = TN H,, # <, we obtain
T, is a finite subsemigroup of the group H, . Thus, 7} is a subgroup of H,_ and so 7, is a regular
subsemigroup of H._ for all » € R. Therefore, T is a regular subsemigroup of J(n).

Lemma 4.10 is proved.

From Lemma 4.10, we easily verify the following lemma.

Corollary4.1. The maximal subsemigroups and the maximal regular subsemigroups of J(n)
coincide.

The following lemma is directly obtained from Lemma 4.8 and Corollary 4.1.

Lemma 4.11. T is a maximal subsemigroup of J(n) if and only if there is a maximal subgroup
U of GL(W) such that T = Upep M, with M, = U<I>;1 where ®,, is defined as previous Lemma
4.6 (p € P).

Lemma 4.12. For n > 2, Q,_2 U J(n) is a maximal subsemigroup of F(V,W).

Proof. Let n > 2. Then we have Q,—2 U J(n) is a regular subsemigroup of F(V,W) by
Lemma 4.5. Thus, it is a subsemigroup of F'(V,W). To prove that Q,_o U J(n) is a maximal
subsemigroup of F'(V, W), suppose that there is a subsemigroup S of F(V, W) such that Q,_2 U
UJ(n) & S C F(V,W). We prove that S is a regular subsemigroup of F'(V,W). Let o be any
element in S. Then there exists o/ € F(V, W) such that & = ad/«, since F(V, W) is regular. We
note that if & € @Q,—2 U J(n), then « is a regular element in S, since Q,—2 U J(n) is regular
and Q,—2 U J(n) C S. Suppose that o ¢ Q2 U J(n), that is, &« € J(n — 1). We assume that
o ¢ S. Thus, o € J(n—1)\ S and we can write o/ = Say for some (3,7 € J(n) C S by
Lemma 4.4. This implies that o/ € S, a contradiction. Whence, o/ € S and so S is a regular
subsemigroup of F'(V, W). Since Q,,—2 U J(n) is a maximal regular subsemigroup of F'(V, W), we
get S = F(V,W). Therefore, Q,,—2 U J(n) is a maximal subsemigroup of F'(V, ).

Lemma 4.12 is proved.

Lemma 4.13. Let M be as in Lemma 4.6. Then Q,_1 U M is a maximal subsemigroup of

Proof. Since QQ,—1 U M is a regular subsemigroup of F'(V, W) by Lemma 4.7, it is a subsemi-
group of F'(V,W). We prove that Q),,_1 U M is a maximal subsemigroup of F'(V,W). Let S be a
subsemigroup of F'(V, W) such that Q,,—1 UM & S C F(V,W). We see that SN J(n) # &. It fol-
lows that SNJ(n) is a subsemigroup of J(n). Then by Lemma 4.10, we get that SN.J(n) is a regular
subsemigroup of J(n). Thus, S = Q,—1 U (SN J(n)) is a regular subsemigroup of F'(V,W). Since
Qn—1 U M is a maximal regular subsemigroup of F'(V, W), we obtain S = F(V,W). Therefore,
Qn—1U M is a maximal subsemigroup of F'(V, W).
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Lemma 4.14. Let S be any maximal subsemigroup of F(V,W). Then the following statements
hold:

(1) SNnJ(n) # 2,

(2) SN J(n) is a maximal subsemigroup of J(n).

Proof. (1)If SNJ(n)=0,weget S CQn1%G Qn1 UM G F(V,W), where M is defined
in Lemma 4.6. But Q,—; U M is a maximal subsemigroup of F'(V,W) by Lemma 4.13, which
contradicts the maximality of S. Therefore, S N J(n) # @.

(2) It follows from (1) that SN .J(n) is a subsemigroup of J(n). If SN.J(n) is not maximal, then
there exists a maximal subsemigroup 7" of J(n) such that SN J(n) & T & J(n). It is easy to see
that @Q,—1 U T is a subsemigroup of F'(V, W) with S ¢ Q,—1 UT & F(V,W), which contradicts
the maximality of S. Therefore, S N J(n) is a maximal subsemigroup of J(n).

Lemma 4.14 is proved.

Theorem 4.1. Let n > 2 and S a maximal subsemigroup of F(V,W). Then S is either of the
form:

(1) Qn-2U J(n)
or

2) Qn_1UM, where M is defined in Lemma 4.6.

Proof. By Lemmas 4.12 and 4.13, we have Q,,—o U J(n) and @Q,,—1 U M are maximal subsemi-
groups of F'(V,WW). On the other hand, since S N J(n) # & by Lemma 4.14 (1). So, we consider
the following two cases.

Casel: SN J(n) = J(n). Hence, J(n) C S. We suppose that S ¢ @Q,,—2 U J(n). Then there
exists a € S and o ¢ Qn_2 U J(n), that is, a € J(n — 1). It follows from Lemma 4.4 that
Jn—1) C J(n)aJ(n) C SaS C S, and so Qn—1 = (J(n — 1)) C S by Lemma 4.9. Whence,
FV,W)=Qn-1UJ(n) CS C F(V,W). Thus, S = F(V, W), which contradicts the maximality
of S. Therefore, S C Qp—2 U J(n). But, Q,—2 U J(n) is a maximal subsemigroup of F'(V, W) by
Lemma 4.12. This implies that S = Q,_2 U J(n).

Case2: SNJ(n) & J(n). By Lemma 4.14 (2), we have SN .J(n) is a maximal subsemigroup of
J(n). Then by Lemma 4.11, we get that SN J(n) = Upep M, where M, = U@;l forallpe P

with a fixed maximal subgroup U of GL(W). We let M = UpEP M,. Then M = SN J(n). Since
SCQp1U(SNJI(n) =Qn-1UM and Q,—1 UM is a maximal subsemigroup of F(V, W) by
Lemma 4.13, we obtain S = Q,,_1 U M.

Theorem 4.1 is proved.

Corollary4.2. For n = 1, each maximal subsemigroup of F(V, W) must be one of the forms:
J(1) or {Oy} UM, where M is defined in Lemma 4.6.

Proof. Assume that n = 1. By Lemma 4.13, we obtain that Qo UM = {Oy} UM is a
maximal subsemigroup of F'(V, W) where M is defined in Lemma 4.6. Furthermore, if n = 1, then
F(V,W)=J0)uUJ(1) = {0y} UJ(1), thatis, J(1) = F(V,W)\ {Ov}. And, since J(1) is a
subsemigroup of F'(V, W), it is clear that J(1) is a maximal subsemigroup of F'(V, W).

Let S be any maximal subsemigroup of F'(V,W). Then we consider two cases.

Casel: ©y ¢ S. Then S C J(1). Since S C J(1) & F(V,W) and J(1) is a subsemigroup of
F(V,W), whence S = J(1).

Case2: Oy € S. By Lemma 4.14 (1), we have SN J(1) # @. If SN J(1) = J(1), we get that
S = F(V,W), a contradiction. Hence, SN J(1) & J(1). Then by the same argument as in the proof
of Theorem 4.1 (Case 2), we obtain S = Qo UM = {Oy } UM, where M is defined in Lemma 4.6.

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 12



1722 W. SOMMANEE

Corollary 4.2 is proved.

Next, we consider the case when V = W and V is a finite dimensional vector space with
dim(V) = n. Then we have F(V,W) = T(V), and it is easy to verify that J(n) = GL(V'). So, we
establish the following corollary.

Corollary4.3. Let V be an n-dimensional vector space over a finite field F (n > 2) and S a
maximal subsemigroup of T(V'). Then S is either of the form:

(1) Qn2UGL(V)
or

(2) Qn-1U M, where M is a maximal subgroup of GL(V').
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