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EMBEDDING THEOREMS AND MAXIMAL SUBSEMIGROUPS OF SOME
LINEAR TRANSFORMATION SEMIGROUPS WITH RESTRICTED RANGE

ТЕОРЕМИ ПРО ВКЛАДЕННЯ ТА МАКСИМАЛЬНI ПIДНАПIВГРУПИ
ДЕЯКИХ НАПIВГРУП ЛIНIЙНИХ ПЕРЕТВОРЕНЬ
З ОБМЕЖЕНИМ ОБРАЗОМ

Let V be a vector space over a field and let T (V ) denote the semigroup of all linear transformations from V into V. For
a fixed subspace W of V, let F (V,W ) be the subsemigroup of T (V ) consisting of all linear transformations \alpha from
V into W such that V \alpha \subseteq W\alpha . In this paper, we prove that any regular semigroup S can be embedded in F (V,W )
with \mathrm{d}\mathrm{i}\mathrm{m}(V ) = | S1| and \mathrm{d}\mathrm{i}\mathrm{m}(W ) = | S| , and determine all the maximal subsemigroups of F (V,W ) when W is a finite
dimensional subspace of V over a finite field.

Нехай V — векторний простiр над деяким полем, а T (V ) — напiвгрупа всiх лiнiйних перетворень з V у V. Для
фiксованого пiдпростору W простору V нехай F (V,W ) — пiднапiвгрупа напiвгрупи T (V ), яка складається з усiх
лiнiйних перетворень \alpha з V у W таких, що V \alpha \subseteq W\alpha . Доведено, що будь-яку регулярну напiвгрупу S можна
вкласти у F (V,W ) з \mathrm{d}\mathrm{i}\mathrm{m}(V ) = | S1| i \mathrm{d}\mathrm{i}\mathrm{m}(W ) = | S| , та визначено всi максимальнi пiднапiвгрупи з F (V,W ),
якщо W — скiнченновимiрний пiдпростiр V над скiнченним полем.

1. Introduction. Let T (X) be the set of all full transformations from a nonempty set X into itself.
It is well-known that T (X) is a regular semigroup under composition of functions. The properties of
T (X) have been widely studied. In 1959, Hall (see [5], Theorem 1.10) showed that every semigroup
S can be embedded in a full transformation semigroup T (S1) by using the extended right regular
representation of S. In [3] (Theorem 8.5) showed that any right cancellative, right simple semigroup
S without idempotents can be embedded in a Bear – Levi semigroup of type (p, p) where p = | S| . In
[2] (Theorem 1.20) proved that any inverse semigroup S can be embedded in the symmetric inverse
semigroup I(S) of all injective partial transformations of S.

If X = \{ 1, 2, . . . , n\} with n \in \BbbZ +, we write Tn instead of T (X). In 1966 Bayramov [1]
characterized all the maximal subsemigroups of Tn, which is either the union of a maximal subgroup
of the symmetric group Sn and Tn\setminus Sn or it is the union of the set of all transformations \alpha \in Tn with
| X\alpha | \leq n  - 2 and Sn. Later in 2002, You [20] determined all the maximal regular subsemigroups
of all ideals of Tn. In 2004, Yang and Yang [19] completely described the maximal subsemigroups
of ideals of Tn. And in 2015, East, Michell and Péresse [4] classified the maximal subsemigroups of
T (X) when X is an infinite set containing certain subgroups of the symmetric group on X.

For a fixed nonempty subset Y of a set X, let

T (X,Y ) = \{ \alpha \in T (X) : X\alpha \subseteq Y \} ,

where X\alpha denotes the image of \alpha . Then T (X,Y ) is a subsemigroup of T (X). In 1975, Symons
[18] described all the automorphisms of T (X,Y ). He also determined when T (X1, Y1) is isomorphic
to T (X2, Y2). In 2005, Nenthein, Youngkhong and Kemprasit [8] characterized the regular elements
of T (X,Y ). In 2008, Sanwong and Sommanee [12] defined
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F (X,Y ) = \{ \alpha \in T (X,Y ) : X\alpha \subseteq Y \alpha \} 

and showed that F (X,Y ) is the largest regular subsemigroup of T (X,Y ). This semigroup plays a
crucial role in characterization of Green’s relations on T (X,Y ). Moreover, they determined a class
of maximal inverse subsemigroups of T (X,Y ). In 2011, Sanwong [11] described Green’s relations,
ideals and all the maximal regular subsemigroups of F (X,Y ). Also, the author proved that every
regular semigroup S can be embedded in F (S1, S). Later in 2013, Sommanee and Sanwong [15]
computed the rank of F (X,Y ) when X is a finite set. Furthermore, they obtained the rank and
idempotent rank of its ideals. Recently in 2018, Sommanee [13] described the maximal inverse
subsemigroups of F (X,Y ) and completely determined all the maximal regular subsemigroups of its
ideals.

For a vector space V over a field F, let T (V ) be the set of all linear transformations from V

into V. It is known that T (V ) is a regular semigroup under composition of functions (see [2, p. 57]).
In 2004, Mendes-Gonçalves and Sullivan [7] (Theorem 3.12) proved that any right simple, right
cancellative semigroup S without idempotents can be embedded in some GS(m,m), the linear
Baer – Levi semigroup on V. After that in 2012, Sullivan [16] (Theorem 3) proved that any semigroup
S can be embedded in T (V ) for some vector space V with dimension | S1| .

For a fixed subspace W of a vector space V, let

T (V,W ) = \{ \alpha \in T (V ) : V \alpha \subseteq W\} .

Then T (V,W ) is a subsemigroup of T (V ). In 2007, Nenthein and Kemprasit [9] proved that \alpha \in 
\in T (V,W ) is a regular element of T (V,W ) if and only if V \alpha = W\alpha . As a consequence, they
showed that T (V,W ) is regular if and only if either V = W or W = \{ 0\} . Later in 2008, Sullivan
[17] proved that the set

F (V,W ) = \{ \alpha \in T (V,W ) : V \alpha \subseteq W\alpha \} ,

consisting of all regular elements in T (V,W ), is the largest regular subsemigroup of T (V,W ). He
characterized Green’s relations on T (V,W ) and showed that the semigroup F (V,W ) is always a
right ideal of T (V,W ). The author also described all the ideals of F (V,W ) and T (V,W ). Re-
cently in 2017, Sommanee and Sangkhanan [14] determined the maximal regular subsemigroups of
F (V,W ) when W is a finite dimensional subspace of V over a finite field F. Moreover, they com-
puted the rank and the idempotent rank of F (V,W ) when V is a finite dimensional vector space
over a finite field F.

Here, we prove that any regular semigroup S can be embedded in F (V,W ) where \mathrm{d}\mathrm{i}\mathrm{m}(V ) =

= | S1| and \mathrm{d}\mathrm{i}\mathrm{m}(W ) = | S| , and determine all the maximal subsemigroups of F (V,W ) when W is
a finite dimensional subspace of V over a finite field F.

2. Preliminaries and notations. Let S be a semigroup. We call a \in S a regular element if
a = axa for some x \in S, and S is said to be a regular semigroup if every element of S is regular.
An element e \in S is called an idempotent if e2 = e. A nonempty subset A of S is said to be an
ideal if SA \subseteq A and AS \subseteq A. A proper (regular) subsemigroup M of S is a maximal (regular)
subsemigroup of S if, whenever M \subseteq T \subseteq S for some a (regular) subsemigroup T of S, then
M = T or T = S.
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Let a and b be elements of a semigroup S. The Green’s relations \scrL , \scrR , \scrH and \scrJ on S are
defined as follows: a\scrL b if S1a = S1b, a\scrR b if aS1 = bS1, \scrH = \scrL \cap \scrR and a\scrJ b if S1aS1 = S1bS1,

where S1 is a semigroup S with the identity adjoined, if necessary. For each a \in S, we denote \scrL -
class, \scrR -class, \scrH -class and \scrJ -class containing a by La, Ra, Ha and Ja, respectively.

A semigroup S is said to be embedded in a semigroup T if there exists an injective function \varphi :
S \rightarrow T such that (xy)\varphi = (x\varphi )(y\varphi ) for all x, y \in S.

Let V be a vector spaces over a field F. A function \alpha : V \rightarrow V is a linear transformation on V

if

(u+ v)\alpha = u\alpha + v\alpha and (au)\alpha = a(u\alpha )

for all vectors u, v \in V and scalar a \in F. The set T (V ) of all linear transformations from V

into V is a semigroup with respect to the composition operation. This semigroup is called a linear
transformation semigroup. We denote by \Theta V the zero map in T (V ), that is, \Theta V : V \rightarrow \{ 0\} .

For a fixed subspace W of a vector space V, let

T (V,W ) = \{ \alpha \in T (V ) : V \alpha \subseteq W\} and F (V,W ) = \{ \alpha \in T (V,W ) : V \alpha \subseteq W\alpha \} .

Then T (V,W ) is a subsemigroup of T (V ) and F (V,W ) is the largest regular subsemigroup of
T (V,W ).

For any set A, | A| means the cardinality of the set A.
In this paper, a subspace of a vector space V over a field F generated by a linearly independent

subset \{ ei : i \in I\} of V is denoted by \langle ei\rangle . If we write U = \langle ei\rangle when U is a subspace of V, it
means the set \{ ei : i \in I\} is a basis of U with \mathrm{d}\mathrm{i}\mathrm{m}(U) = | I| . Let \{ ui : i \in I\} be a subset of V.

Then the notation
\sum 

aiui means the linear combination

ai1ui1 + ai2ui2 + . . .+ ainuin

for some n \in \BbbZ +, ui1 , ui2 , . . . , uin \in \{ ui : i \in I\} and scalars ai1 , ai2 , . . . , ain \in F.

A construction of a map \alpha \in T (V ), we first choose a basis \{ ei : i \in I\} for a vector space V

and a subset \{ ui : i \in I\} of V, and then let ei\alpha = ui for each i \in I and extending this action
by linearity to the whole of V. To shorten this process, we simply say, given \{ ei : i \in I\} and \{ ai :
i \in I\} within the context. Then \alpha \in T (V ) is defined by letting

\alpha =

\biggl( 
ei
ui

\biggr) 
.

Let S1, S2, . . . , Sn be subspaces of a vector space V where n \geq 2. We call V the internal direct
sum of S1, S2, . . . , Sn, and we write

V = S1 \oplus S2 \oplus . . .\oplus Sn,

if V = S1 + S2 + . . .+ Sn = \{ s1 + s2 + . . .+ sn : si \in Si, 1 \leq i \leq n\} and Si \cap (S1 + . . .+ Si - 1 +

+ Si+1 + . . .+ Sn) = \{ 0\} for all 1 \leq i \leq n. We note that if U is a subspace of V, then there exists
a subspace T of V such that V = U \oplus T (see [10], Theorem 1.4).

The external direct sum of a family of rings \{ Ri : i \in I\} , denoted
\sum 

i\in I
Ri, is the set of all

sequences (ri) where ri \in Ri and at most finitely many ri are non-zero.
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3. Embedding theorems. In 2011, Sanwong proved that every regular semigroup S can be
embedded in F (S1, S) (see [11], Theorem 3). Here, we prove a linear version of that result.

Remark 3.1 ([6, p. 182], Remark (c)). Let X be any nonempty set and R a ring with identity.
Let V be the external direct sum

\sum 
Ri with the copies of R indexed by the set X. Then V is a free

R-module on the set X such that X is a basis of V. In particular, if R is a field, then V =
\sum 

Ri is
a vector space over R with dimension | X| .

Lemma 3.1 ([16], Theorem 3). Any semigroup S can be embedded in T (U) where U =
\sum 

Fi

is the external direct sum of the copies of a field F indexed by the semigroup S1 (U is a vector
space with dimension | S1| ).

Theorem 3.1. Let W be a subspace of a vector space V. Then T (W ) can be embedded in
F (V,W ).

Proof. It is clear that if V = W, then T (W ) = F (V, V ) = F (V,W ) and so T (W ) \sim = F (V,W ).

But, when W = \{ 0\} , we see that T (W ) = \{ \Theta W \} and F (V,W ) = \{ \Theta V \} . Thus, they are isomorphic.
Now, suppose that \{ 0\} \not = W \varsubsetneq V. Let W = \langle wi\rangle and V = \langle wi\rangle \oplus \langle vj\rangle for some subspace \langle vj\rangle 

of V. Then we have \{ wi : i \in I\} \not = \varnothing \not = \{ vj : j \in J\} . Let \alpha \in T (W ) and write

\alpha =

\biggl( 
wi

wi\alpha 

\biggr) 
.

Define \alpha \prime \in T (V,W ) as follows:

\alpha \prime =

\biggl( 
wi vj
wi\alpha 0

\biggr) 
.

We obtain V \alpha \prime \subseteq W\alpha \prime , which implies that \alpha \prime \in F (V,W ). For any element w \in W, we can write
w =

\sum 
aiwi and so w\alpha \prime = (

\sum 
aiwi)\alpha 

\prime =
\sum 

ai(wi\alpha 
\prime ) =

\sum 
ai(wi\alpha ) = (

\sum 
aiwi)\alpha = w\alpha . Also, if

\alpha , \beta \in T (W ) and w \in W, then w\alpha \in W and thus (w\alpha )\beta \prime = (w\alpha )\beta . We define

\Phi : T (W ) \rightarrow F (V,W ) by \alpha \Phi = \alpha \prime for all \alpha \in T (W ).

We prove that \Phi is a monomorphism. Let \alpha , \beta \in T (W ). If \alpha \Phi = \beta \Phi , then \alpha \prime = \beta \prime . For w \in W,

w =
\sum 

aiwi and w\alpha =
\bigl( \sum 

aiwi

\bigr) 
\alpha =

\sum 
ai(wi\alpha ) =

\sum 
ai(wi\alpha 

\prime ) =
\sum 

ai(wi\beta 
\prime ) =

\sum 
ai(wi\beta ) =

=
\bigl( \sum 

aiwi

\bigr) 
\beta = w\beta . So, \alpha = \beta and hence \Phi is injective. Let v \in V. Then we can write v =

=
\sum 

biwi+
\sum 

cjvj and v(\alpha \prime \beta \prime ) =
\bigl( \sum 

biwi+
\sum 

cjvj
\bigr) 
(\alpha \prime \beta \prime ) =

\sum 
bi
\bigl( 
wi(\alpha 

\prime \beta \prime )
\bigr) 
+
\sum 

cj
\bigl( 
vj(\alpha 

\prime \beta \prime )
\bigr) 
=

=
\sum 

bi
\bigl( 
(wi\alpha 

\prime )\beta \prime \bigr) +
\sum 

cj
\bigl( 
(vj\alpha 

\prime )\beta \prime \bigr) =
\sum 

bi(wi\alpha )\beta 
\prime +

\sum 
cj(0\beta 

\prime ) =
\sum 

bi(wi\alpha )\beta +
\sum 

cj(0) =

=
\sum 

bi
\bigl( 
wi(\alpha \beta )

\bigr) 
+

\sum 
cj(0) =

\sum 
bi
\bigl( 
wi(\alpha \beta )

\prime \bigr) + \sum 
cj
\bigl( 
vj(\alpha \beta )

\prime \bigr) =
\bigl( \sum 

biwi +
\sum 

cjvj
\bigr) 
(\alpha \beta )\prime =

= v(\alpha \beta )\prime . Whence, (\alpha \beta )\prime = \alpha \prime \beta \prime , it follows that (\alpha \beta )\Phi = (\alpha \Phi )(\beta \Phi ). Thus, \Phi is a monomorphism
and therefore T (W ) can be embedded in F (V,W ).

Theorem 3.1 is proved.
By Lemma 3.1, any semigroup S can be embedded in T (W ) for some vector space W with

dimension | S1| . And by Theorem 3.1, T (W ) can be embedded in F (V,W ) when V is any vector
space which contains W. So, we have the following corollary.

Corollary 3.1. Any semigroup S can be embedded in F (V,W ) for some subspace W of V with
\mathrm{d}\mathrm{i}\mathrm{m}(W ) = | S1| , where V is any vector space which contains W.

Lemma 3.2. Let S be any semigroup and x \in S. We write S1 = \{ ai : i \in I\} and define \rho x :
S1 \rightarrow S1 by ai\rho x = aix for all i \in I. Let F be any field and V the external direct sum

\sum 
Fi with

the copies of F indexed by S1. Then:
(1) \rho x can be extended by linearity to an element of T (V ),
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(2) the mapping \rho : S \rightarrow T (V ) is given by x\rho = \rho x for all x \in S, is a monomorphism.

Proof. See the proof as given in [16] (Theorem 3).

Lemma 3.3. Let
\sum 

Fi be the external direct sum of the copies of a field F indexed by some set
I with | I| \geq 2. We fix k \in I and let J = I \setminus \{ k\} . Let G be the external direct sum of \{ 0\} \cup \{ Fj :
j \in J\} , where 0 \in Fk = F, and

\sum 
Fj is the external direct sum of the copies of a field F indexed

by the set J. Then:

(1) G is a subspace of
\sum 

Fi,

(2)
\sum 

Fj is isomorphic to G.

Proof. (1) It is easy to verify that G is a subspace of
\sum 

Fi.

(2) For each (rj) \in 
\sum 

Fj , we construct an element (r\prime i) in G by

(r\prime i) =

\Biggl\{ 
0, if i = k,

rj , if i \in I \setminus \{ k\} = J.

Define \varphi :
\sum 

Fj \rightarrow G by (rj)\varphi = (r\prime i) for all (rj) \in 
\sum 

Fj . Then \varphi is bijective. Let (rj), (sj) \in 
\in 
\sum 

Fj and c \in F. It is routine to show [(rj) + (sj)]\varphi = (rj)\varphi + (sj)\varphi and [c(rj)]\varphi = c[(rj)\varphi ].

Thus, \varphi is an isomorphism and so
\sum 

Fj
\sim = G.

Lemma 3.3 is proved.

Theorem 3.2. Any regular semigroup S can be embedded in F (V,W ) for some subspace W

of a vector space V, where \mathrm{d}\mathrm{i}\mathrm{m}(V ) = | S1| and \mathrm{d}\mathrm{i}\mathrm{m}(W ) = | S| .
Proof. Assume that S is a regular semigroup and let V be the external direct sum

\sum 
Fi with

the copies of a field F indexed by S1. We note that V =
\bigl\langle 
S1

\bigr\rangle 
and \mathrm{d}\mathrm{i}\mathrm{m}(V ) = | S1| by Remark 3.1.

There are two cases to consider.

Case 1: 1 \in S. Then we have S1 = S. Let W = V. It follows from Lemma 3.1 that S can be
embedded in T (V ) = F (V,W ) such that \mathrm{d}\mathrm{i}\mathrm{m}(W ) = \mathrm{d}\mathrm{i}\mathrm{m}(V ) = | S1| = | S| .

Case 2: 1 /\in S. This implies that | S1| \geq 2 and S = S1 \setminus \{ 1\} . Let G be the external direct sum
of \{ 0\} \cup \{ Fj : j \in S\} , where 0 \in F1 = F = Fj for all j \in S. It follows from Lemma 3.3 that\sum 

Fj
\sim = G \subseteq V, where

\sum 
Fj is the external direct sum of \{ Fj : j \in S\} with the copies of the field

F indexed by S. Here, we let W =
\sum 

Fj . Thus, we have W =
\sum 

Fj = \langle S\rangle , \mathrm{d}\mathrm{i}\mathrm{m}(W ) = | S| and
W \subseteq V in the sense of embedding. Now, we write S1 = \{ ai : i \in I\} . For each x \in S, define \rho x :
S1 \rightarrow S1 by ai\rho x = aix for all i \in I. Then by Lemma 3.2 (1), we obtain \rho x \in T (V ) and it is clear
that ai\rho x = aix \in S for all i \in I. Notice that there exists t \in S such that x = xtx since S is regular.
We prove \rho x \in F (V,W ). Let v\rho x \in V \rho x for some v \in V =

\bigl\langle 
S1

\bigr\rangle 
. So, we can write v =

\sum 
diai and

v\rho x =
\sum 

di(ai\rho x) \in \langle S\rangle = W. Whence, V \rho x \subseteq W. Next, we prove V \rho x \subseteq W\rho x. If v =
\sum 

diai
for some ai \in S, then v\rho x =

\bigl( \sum 
diai

\bigr) 
\rho x \in \langle S\rangle \rho x = W\rho x. If v = d \cdot 1 for some scalar d \in F, then

v\rho x = (d \cdot 1)\rho x = d(1\rho x) = dx = d(xtx) = d((xt)x) = d((xt)\rho x) = (d(xt))\rho x \in \langle S\rangle \rho x = W\rho x.

Hence, V \rho x \subseteq W\rho x and so \rho x \in F (V,W ). We define \rho : S \rightarrow F (V,W ) by x\rho = \rho x for all x \in S.

Then by Lemma 3.2 (2), we have \rho is a monomorphism. Therefore, we conclude that S can be
embedded in F (V,W ).

Theorem 3.2 is proved.

4. Maximal subsemigroups. In 2017, Sommanee and Sangkhanan determined the maximal
regular subsemigroups of F (V,W ), when W is a finite dimensional subspace of a vector space V

over a finite field F (see [14], Theorem 4.9).
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In general, if S is a regular semigroup and T is a maximal regular subsemigroup of S, then
T may not be a maximal subsemigroup of S (see [19, 20], Theorem 2). Here, we prove that the
maximal subsemigroups and the maximal regular subsemigroups of F (V,W ) coincide.

We begin by recalling some notations and results from [14] that will be useful in this section.
Lemma 4.1 ([14], Lemma 2.3). Let W be a subspace of a vector space V and \alpha , \beta \in F (V,W ).

Then:

(1) \alpha \scrJ \beta if and only if \mathrm{d}\mathrm{i}\mathrm{m}(V \alpha ) = \mathrm{d}\mathrm{i}\mathrm{m}(V \beta ),

(2) \alpha \scrH \beta if and only if V \alpha = V \beta and \mathrm{k}\mathrm{e}\mathrm{r}\alpha = \mathrm{k}\mathrm{e}\mathrm{r}\beta ,

where \mathrm{k}\mathrm{e}\mathrm{r}\alpha = \{ v \in V : v\alpha = 0\} .
Lemma 4.2 ([14], Theorem 2.4). Let W be a subspace of a vector space V. Then the ideals of

F (V,W ) are precisely the sets Qk = \{ \alpha \in F (V,W ) : \mathrm{d}\mathrm{i}\mathrm{m}(V \alpha ) \leq k\} , where 0 \leq k \leq \mathrm{d}\mathrm{i}\mathrm{m}(W ).

We note that Qk is a regular subsemigroup of F (V,W ) (see [14], Lemma 2.5).
Let n \geq 0 be an integer and W an n-dimensional subspace of a vector space V over a finite

field F.

For 0 \leq k \leq n = \mathrm{d}\mathrm{i}\mathrm{m}(W ), define J(k) = \{ \alpha \in F (V,W ) : \mathrm{d}\mathrm{i}\mathrm{m}(V \alpha ) = k\} . Then J(k) is a
\scrJ -class of F (V,W ). Let Qk be defined as in Lemma 4.2. We have Qk = J(0) \cup J(1) \cup . . . \cup J(k)

and Qn = F (V,W ).

Remark 4.1. The following facts are directly obtained from the definitions of J(k) and Qk :

(1) Q0 = J(0) contains exactly one element \Theta V , the zero map;

(2) for each \alpha \in J(n), V \alpha = W since V \alpha \subseteq W and \mathrm{d}\mathrm{i}\mathrm{m}(V \alpha ) = n = \mathrm{d}\mathrm{i}\mathrm{m}(W ) is finite.

We will use the notation GL(U) as a set of all automorphisms of a vector space U over a field
F. It is well-known that GL(U) is a group under the composition of functions.

Lemma 4.3 ([14], Lemma 3.2). Let \varepsilon \in F (V,W ) be an idempotent. Then H\varepsilon 
\sim = GL(V \varepsilon ).

From now on, we suppose that n \geq 1 and let E
\bigl( 
J(n)

\bigr) 
= \{ \varepsilon p : p \in P\} be the set of all

idempotents in J(n). Then we have

J(n) =
\bigcup 
p\in P

H\varepsilon p

is a disjoint union of groups all of which are isomorphic (see [14], Lemma 3.3). Moreover, J(n) is
a regular subsemigroup of F (V,W ) (see [14], Lemma 3.6).

Lemma 4.4 ([14], Lemma 4.1). J(n - 1) \subseteq J(n)\alpha J(n) for all \alpha \in J(n - 1).

Lemma 4.5 ([14], Theorem 4.2). For n \geq 2, the set Qn - 2 \cup J(n) is a maximal regular sub-
semigroup of F (V,W ).

For each \varepsilon p \in E
\bigl( 
J(n)

\bigr) 
, H\varepsilon p

\sim = GL(V \varepsilon p) = GL(W ) by Lemma 4.3 and Remark 4.1 (2). We
let \Phi p : H\varepsilon p \rightarrow GL(W ) be an isomorphism and U a fixed maximal subgroup of GL(W ). For each
p \in P, we define

Mp = U\Phi  - 1
p .

Then Mp is a maximal subgroup of H\varepsilon p for all p \in P (for details, see [14, p. 409]).

Lemma 4.6 ([14], Lemma 4.3). Let Mp be defined as above and M =
\bigcup 

p\in P
Mp. Then M is

a maximal regular subsemigroup of J(n).

Lemma 4.7 ([14], Theorem 4.4). Let M be as in Lemma 4.6. Then Qn - 1 \cup M is a maximal
regular subsemigroup of F (V,W ).

ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 12



1720 W. SOMMANEE

Lemma 4.8 ([14], Lemma 4.6). T is a maximal regular subsemigroup of J(n) if and only if

there is a maximal subgroup U of GL(W ) such that T =
\bigcup 

p\in P
Mp with Mp = U\Phi  - 1

p , where \Phi p

is defined as previous Lemma 4.6 (p \in P ).

Recall that if A is a subset of a semigroup S, then \langle A\rangle denotes the subsemigroup of S generated
by A.

Lemma 4.9 ([14], Lemma 4.7). For 0 \leq k \leq n - 1, Qk = \langle J(k)\rangle .
To prove the main results, we prepare the following two lemmas.

Lemma 4.10. Every subsemigroup of J(n) is a regular subsemigroup of J(n).

Proof. Assume that T is a subsemigroup of J(n) =
\bigcup 

p\in P
H\varepsilon p . Let R = \{ r \in P : T\cap H\varepsilon r \not = \varnothing \} 

and Tr = T \cap H\varepsilon r for all r \in R. It is clear that T =
\bigcup 

r\in R
Tr. Since Tr = T \cap H\varepsilon r \not = \varnothing , we obtain

Tr is a finite subsemigroup of the group H\varepsilon r . Thus, Tr is a subgroup of H\varepsilon r and so Tr is a regular
subsemigroup of H\varepsilon r for all r \in R. Therefore, T is a regular subsemigroup of J(n).

Lemma 4.10 is proved.
From Lemma 4.10, we easily verify the following lemma.

Corollary 4.1. The maximal subsemigroups and the maximal regular subsemigroups of J(n)

coincide.

The following lemma is directly obtained from Lemma 4.8 and Corollary 4.1.

Lemma 4.11. T is a maximal subsemigroup of J(n) if and only if there is a maximal subgroup

U of GL(W ) such that T =
\bigcup 

p\in P
Mp with Mp = U\Phi  - 1

p where \Phi p is defined as previous Lemma

4.6 (p \in P ).

Lemma 4.12. For n \geq 2, Qn - 2 \cup J(n) is a maximal subsemigroup of F (V,W ).

Proof. Let n \geq 2. Then we have Qn - 2 \cup J(n) is a regular subsemigroup of F (V,W ) by
Lemma 4.5. Thus, it is a subsemigroup of F (V,W ). To prove that Qn - 2 \cup J(n) is a maximal
subsemigroup of F (V,W ), suppose that there is a subsemigroup S of F (V,W ) such that Qn - 2 \cup 
\cup J(n) \varsubsetneq S \subseteq F (V,W ). We prove that S is a regular subsemigroup of F (V,W ). Let \alpha be any
element in S. Then there exists \alpha \prime \in F (V,W ) such that \alpha = \alpha \alpha \prime \alpha , since F (V,W ) is regular. We
note that if \alpha \in Qn - 2 \cup J(n), then \alpha is a regular element in S, since Qn - 2 \cup J(n) is regular
and Qn - 2 \cup J(n) \subseteq S. Suppose that \alpha /\in Qn - 2 \cup J(n), that is, \alpha \in J(n  - 1). We assume that
\alpha \prime /\in S. Thus, \alpha \prime \in J(n  - 1) \setminus S and we can write \alpha \prime = \beta \alpha \gamma for some \beta , \gamma \in J(n) \subseteq S by
Lemma 4.4. This implies that \alpha \prime \in S, a contradiction. Whence, \alpha \prime \in S and so S is a regular
subsemigroup of F (V,W ). Since Qn - 2 \cup J(n) is a maximal regular subsemigroup of F (V,W ), we
get S = F (V,W ). Therefore, Qn - 2 \cup J(n) is a maximal subsemigroup of F (V,W ).

Lemma 4.12 is proved.

Lemma 4.13. Let M be as in Lemma 4.6. Then Qn - 1 \cup M is a maximal subsemigroup of
F (V,W ).

Proof. Since Qn - 1 \cup M is a regular subsemigroup of F (V,W ) by Lemma 4.7, it is a subsemi-
group of F (V,W ). We prove that Qn - 1 \cup M is a maximal subsemigroup of F (V,W ). Let S be a
subsemigroup of F (V,W ) such that Qn - 1 \cup M \varsubsetneq S \subseteq F (V,W ). We see that S \cap J(n) \not = \varnothing . It fol-
lows that S\cap J(n) is a subsemigroup of J(n). Then by Lemma 4.10, we get that S\cap J(n) is a regular
subsemigroup of J(n). Thus, S = Qn - 1 \cup (S \cap J(n)) is a regular subsemigroup of F (V,W ). Since
Qn - 1 \cup M is a maximal regular subsemigroup of F (V,W ), we obtain S = F (V,W ). Therefore,
Qn - 1 \cup M is a maximal subsemigroup of F (V,W ).
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Lemma 4.14. Let S be any maximal subsemigroup of F (V,W ). Then the following statements
hold:

(1) S \cap J(n) \not = \varnothing ,
(2) S \cap J(n) is a maximal subsemigroup of J(n).
Proof. (1) If S \cap J(n) = \varnothing , we get S \subseteq Qn - 1 \varsubsetneq Qn - 1 \cup M \varsubsetneq F (V,W ), where M is defined

in Lemma 4.6. But Qn - 1 \cup M is a maximal subsemigroup of F (V,W ) by Lemma 4.13, which
contradicts the maximality of S. Therefore, S \cap J(n) \not = \varnothing .

(2) It follows from (1) that S\cap J(n) is a subsemigroup of J(n). If S\cap J(n) is not maximal, then
there exists a maximal subsemigroup T of J(n) such that S \cap J(n) \varsubsetneq T \varsubsetneq J(n). It is easy to see
that Qn - 1 \cup T is a subsemigroup of F (V,W ) with S \varsubsetneq Qn - 1 \cup T \varsubsetneq F (V,W ), which contradicts
the maximality of S. Therefore, S \cap J(n) is a maximal subsemigroup of J(n).

Lemma 4.14 is proved.
Theorem 4.1. Let n \geq 2 and S a maximal subsemigroup of F (V,W ). Then S is either of the

form:
(1) Qn - 2 \cup J(n)

or
(2) Qn - 1 \cup M, where M is defined in Lemma 4.6.
Proof. By Lemmas 4.12 and 4.13, we have Qn - 2 \cup J(n) and Qn - 1 \cup M are maximal subsemi-

groups of F (V,W ). On the other hand, since S \cap J(n) \not = \varnothing by Lemma 4.14 (1). So, we consider
the following two cases.

Case 1: S \cap J(n) = J(n). Hence, J(n) \subseteq S. We suppose that S \nsubseteq Qn - 2 \cup J(n). Then there
exists \alpha \in S and \alpha /\in Qn - 2 \cup J(n), that is, \alpha \in J(n  - 1). It follows from Lemma 4.4 that
J(n  - 1) \subseteq J(n)\alpha J(n) \subseteq S\alpha S \subseteq S, and so Qn - 1 = \langle J(n  - 1)\rangle \subseteq S by Lemma 4.9. Whence,
F (V,W ) = Qn - 1 \cup J(n) \subseteq S \subseteq F (V,W ). Thus, S = F (V,W ), which contradicts the maximality
of S. Therefore, S \subseteq Qn - 2 \cup J(n). But, Qn - 2 \cup J(n) is a maximal subsemigroup of F (V,W ) by
Lemma 4.12. This implies that S = Qn - 2 \cup J(n).

Case 2: S\cap J(n) \varsubsetneq J(n). By Lemma 4.14 (2), we have S\cap J(n) is a maximal subsemigroup of

J(n). Then by Lemma 4.11, we get that S \cap J(n) =
\bigcup 

p\in P
Mp, where Mp = U\Phi  - 1

p for all p \in P

with a fixed maximal subgroup U of GL(W ). We let M =
\bigcup 

p\in P
Mp. Then M = S \cap J(n). Since

S \subseteq Qn - 1 \cup (S \cap J(n)) = Qn - 1 \cup M and Qn - 1 \cup M is a maximal subsemigroup of F (V,W ) by
Lemma 4.13, we obtain S = Qn - 1 \cup M.

Theorem 4.1 is proved.
Corollary 4.2. For n = 1, each maximal subsemigroup of F (V,W ) must be one of the forms:

J(1) or \{ \Theta V \} \cup M, where M is defined in Lemma 4.6.
Proof. Assume that n = 1. By Lemma 4.13, we obtain that Q0 \cup M = \{ \Theta V \} \cup M is a

maximal subsemigroup of F (V,W ) where M is defined in Lemma 4.6. Furthermore, if n = 1, then
F (V,W ) = J(0) \cup J(1) = \{ \Theta V \} \cup J(1), that is, J(1) = F (V,W ) \setminus \{ \Theta V \} . And, since J(1) is a
subsemigroup of F (V,W ), it is clear that J(1) is a maximal subsemigroup of F (V,W ).

Let S be any maximal subsemigroup of F (V,W ). Then we consider two cases.
Case 1: \Theta V /\in S. Then S \subseteq J(1). Since S \subseteq J(1) \varsubsetneq F (V,W ) and J(1) is a subsemigroup of

F (V,W ), whence S = J(1).

Case 2: \Theta V \in S. By Lemma 4.14 (1), we have S \cap J(1) \not = \varnothing . If S \cap J(1) = J(1), we get that
S = F (V,W ), a contradiction. Hence, S \cap J(1) \varsubsetneq J(1). Then by the same argument as in the proof
of Theorem 4.1 (Case 2), we obtain S = Q0 \cup M = \{ \Theta V \} \cup M, where M is defined in Lemma 4.6.
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Corollary 4.2 is proved.
Next, we consider the case when V = W and V is a finite dimensional vector space with

\mathrm{d}\mathrm{i}\mathrm{m}(V ) = n. Then we have F (V,W ) = T (V ), and it is easy to verify that J(n) = GL(V ). So, we
establish the following corollary.

Corollary 4.3. Let V be an n-dimensional vector space over a finite field F (n \geq 2) and S a
maximal subsemigroup of T (V ). Then S is either of the form:

(1) Qn - 2 \cup GL(V )

or
(2) Qn - 1 \cup M, where M is a maximal subgroup of GL(V ).
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