EMBEDDING THEOREMS AND MAXIMAL SUBSEMIGROUPS OF SOME LINEAR TRANSFORMATION SEMIGROUPS WITH RESTRICTED RANGE ТЕОРЕМИ ПРО ВКЛАДЕННЯ ТА МАКСИМАЛЬНІ ПІДНАПІВГРУПИ ДЕЯКИХ НАПІВГРУП ЛІНІЙНИХ ПЕРЕТВОРЕНЬ 3 ОБМЕЖЕНИМ ОБРАЗОМ

Abstract

Let V be a vector space over a field and let $T(V)$ denote the semigroup of all linear transformations from V into V. For a fixed subspace W of V, let $F(V, W)$ be the subsemigroup of $T(V)$ consisting of all linear transformations α from V into W such that $V \alpha \subseteq W \alpha$. In this paper, we prove that any regular semigroup S can be embedded in $F(V, W)$ with $\operatorname{dim}(V)=\left|S^{1}\right|$ and $\operatorname{dim}(W)=|S|$, and determine all the maximal subsemigroups of $F(V, W)$ when W is a finite dimensional subspace of V over a finite field.

Нехай V - векторний простір над деяким полем, а $T(V)$ - напівгрупа всіх лінійних перетворень з V у V. Для фіксованого підпростору W простору V нехай $F(V, W)$ - піднапівгрупа напівгрупи $T(V)$, яка складається з усіх лінійних перетворень α з V у W таких, що $V \alpha \subseteq W \alpha$. Доведено, що будь-яку регулярну напівгрупу S можна вкласти у $F(V, W)$ з $\operatorname{dim}(V)=\left|S^{1}\right| \mathrm{i} \operatorname{dim}(W)=|S|$, та визначено всі максимальні піднапівгрупи з $F(V, W)$, якщо W - скінченновимірний підпростір V над скінченним полем.

1. Introduction. Let $T(X)$ be the set of all full transformations from a nonempty set X into itself. It is well-known that $T(X)$ is a regular semigroup under composition of functions. The properties of $T(X)$ have been widely studied. In 1959, Hall (see [5], Theorem 1.10) showed that every semigroup S can be embedded in a full transformation semigroup $T\left(S^{1}\right)$ by using the extended right regular representation of S. In [3] (Theorem 8.5) showed that any right cancellative, right simple semigroup S without idempotents can be embedded in a Bear-Levi semigroup of type (p, p) where $p=|S|$. In [2] (Theorem 1.20) proved that any inverse semigroup S can be embedded in the symmetric inverse semigroup $I(S)$ of all injective partial transformations of S.

If $X=\{1,2, \ldots, n\}$ with $n \in \mathbb{Z}^{+}$, we write T_{n} instead of $T(X)$. In 1966 Bayramov [1] characterized all the maximal subsemigroups of T_{n}, which is either the union of a maximal subgroup of the symmetric group S_{n} and $T_{n} \backslash S_{n}$ or it is the union of the set of all transformations $\alpha \in T_{n}$ with $|X \alpha| \leq n-2$ and S_{n}. Later in 2002, You [20] determined all the maximal regular subsemigroups of all ideals of T_{n}. In 2004, Yang and Yang [19] completely described the maximal subsemigroups of ideals of T_{n}. And in 2015, East, Michell and Péresse [4] classified the maximal subsemigroups of $T(X)$ when X is an infinite set containing certain subgroups of the symmetric group on X.

For a fixed nonempty subset Y of a set X, let

$$
T(X, Y)=\{\alpha \in T(X): X \alpha \subseteq Y\},
$$

where $X \alpha$ denotes the image of α. Then $T(X, Y)$ is a subsemigroup of $T(X)$. In 1975, Symons [18] described all the automorphisms of $T(X, Y)$. He also determined when $T\left(X_{1}, Y_{1}\right)$ is isomorphic to $T\left(X_{2}, Y_{2}\right)$. In 2005, Nenthein, Youngkhong and Kemprasit [8] characterized the regular elements of $T(X, Y)$. In 2008, Sanwong and Sommanee [12] defined

$$
F(X, Y)=\{\alpha \in T(X, Y): X \alpha \subseteq Y \alpha\}
$$

and showed that $F(X, Y)$ is the largest regular subsemigroup of $T(X, Y)$. This semigroup plays a crucial role in characterization of Green's relations on $T(X, Y)$. Moreover, they determined a class of maximal inverse subsemigroups of $T(X, Y)$. In 2011, Sanwong [11] described Green's relations, ideals and all the maximal regular subsemigroups of $F(X, Y)$. Also, the author proved that every regular semigroup S can be embedded in $F\left(S^{1}, S\right)$. Later in 2013, Sommanee and Sanwong [15] computed the rank of $F(X, Y)$ when X is a finite set. Furthermore, they obtained the rank and idempotent rank of its ideals. Recently in 2018, Sommanee [13] described the maximal inverse subsemigroups of $F(X, Y)$ and completely determined all the maximal regular subsemigroups of its ideals.

For a vector space V over a field F, let $T(V)$ be the set of all linear transformations from V into V. It is known that $T(V)$ is a regular semigroup under composition of functions (see [2, p. 57]). In 2004, Mendes-Gonçalves and Sullivan [7] (Theorem 3.12) proved that any right simple, right cancellative semigroup S without idempotents can be embedded in some $G S(m, m)$, the linear Baer-Levi semigroup on V. After that in 2012, Sullivan [16] (Theorem 3) proved that any semigroup S can be embedded in $T(V)$ for some vector space V with dimension $\left|S^{1}\right|$.

For a fixed subspace W of a vector space V, let

$$
T(V, W)=\{\alpha \in T(V): V \alpha \subseteq W\} .
$$

Then $T(V, W)$ is a subsemigroup of $T(V)$. In 2007, Nenthein and Kemprasit [9] proved that $\alpha \in$ $\in T(V, W)$ is a regular element of $T(V, W)$ if and only if $V \alpha=W \alpha$. As a consequence, they showed that $T(V, W)$ is regular if and only if either $V=W$ or $W=\{0\}$. Later in 2008, Sullivan [17] proved that the set

$$
F(V, W)=\{\alpha \in T(V, W): V \alpha \subseteq W \alpha\},
$$

consisting of all regular elements in $T(V, W)$, is the largest regular subsemigroup of $T(V, W)$. He characterized Green's relations on $T(V, W)$ and showed that the semigroup $F(V, W)$ is always a right ideal of $T(V, W)$. The author also described all the ideals of $F(V, W)$ and $T(V, W)$. Recently in 2017, Sommanee and Sangkhanan [14] determined the maximal regular subsemigroups of $F(V, W)$ when W is a finite dimensional subspace of V over a finite field F. Moreover, they computed the rank and the idempotent rank of $F(V, W)$ when V is a finite dimensional vector space over a finite field F.

Here, we prove that any regular semigroup S can be embedded in $F(V, W)$ where $\operatorname{dim}(V)=$ $=\left|S^{1}\right|$ and $\operatorname{dim}(W)=|S|$, and determine all the maximal subsemigroups of $F(V, W)$ when W is a finite dimensional subspace of V over a finite field F.
2. Preliminaries and notations. Let S be a semigroup. We call $a \in S$ a regular element if $a=a x a$ for some $x \in S$, and S is said to be a regular semigroup if every element of S is regular. An element $e \in S$ is called an idempotent if $e^{2}=e$. A nonempty subset A of S is said to be an ideal if $S A \subseteq A$ and $A S \subseteq A$. A proper (regular) subsemigroup M of S is a maximal (regular) subsemigroup of S if, whenever $M \subseteq T \subseteq S$ for some a (regular) subsemigroup T of S, then $M=T$ or $T=S$.

Let a and b be elements of a semigroup S. The Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{H}$ and \mathcal{J} on S are defined as follows: $a \mathcal{L} b$ if $S^{1} a=S^{1} b, a \mathcal{R} b$ if $a S^{1}=b S^{1}, \mathcal{H}=\mathcal{L} \cap \mathcal{R}$ and $a \mathcal{J} b$ if $S^{1} a S^{1}=S^{1} b S^{1}$, where S^{1} is a semigroup S with the identity adjoined, if necessary. For each $a \in S$, we denote \mathcal{L} class, \mathcal{R}-class, \mathcal{H}-class and \mathcal{J}-class containing a by L_{a}, R_{a}, H_{a} and J_{a}, respectively.

A semigroup S is said to be embedded in a semigroup T if there exists an injective function φ : $S \rightarrow T$ such that $(x y) \varphi=(x \varphi)(y \varphi)$ for all $x, y \in S$.

Let V be a vector spaces over a field F. A function $\alpha: V \rightarrow V$ is a linear transformation on V if

$$
(u+v) \alpha=u \alpha+v \alpha \text { and }(a u) \alpha=a(u \alpha)
$$

for all vectors $u, v \in V$ and scalar $a \in F$. The set $T(V)$ of all linear transformations from V into V is a semigroup with respect to the composition operation. This semigroup is called a linear transformation semigroup. We denote by Θ_{V} the zero map in $T(V)$, that is, $\Theta_{V}: V \rightarrow\{0\}$.

For a fixed subspace W of a vector space V, let

$$
T(V, W)=\{\alpha \in T(V): V \alpha \subseteq W\} \text { and } F(V, W)=\{\alpha \in T(V, W): V \alpha \subseteq W \alpha\}
$$

Then $T(V, W)$ is a subsemigroup of $T(V)$ and $F(V, W)$ is the largest regular subsemigroup of $T(V, W)$.

For any set $A,|A|$ means the cardinality of the set A.
In this paper, a subspace of a vector space V over a field F generated by a linearly independent subset $\left\{e_{i}: i \in I\right\}$ of V is denoted by $\left\langle e_{i}\right\rangle$. If we write $U=\left\langle e_{i}\right\rangle$ when U is a subspace of V, it means the set $\left\{e_{i}: i \in I\right\}$ is a basis of U with $\operatorname{dim}(U)=|I|$. Let $\left\{u_{i}: i \in I\right\}$ be a subset of V. Then the notation $\sum a_{i} u_{i}$ means the linear combination

$$
a_{i_{1}} u_{i_{1}}+a_{i_{2}} u_{i_{2}}+\ldots+a_{i_{n}} u_{i_{n}}
$$

for some $n \in \mathbb{Z}^{+}, u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{n}} \in\left\{u_{i}: i \in I\right\}$ and scalars $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}} \in F$.
A construction of a map $\alpha \in T(V)$, we first choose a basis $\left\{e_{i}: i \in I\right\}$ for a vector space V and a subset $\left\{u_{i}: i \in I\right\}$ of V, and then let $e_{i} \alpha=u_{i}$ for each $i \in I$ and extending this action by linearity to the whole of V. To shorten this process, we simply say, given $\left\{e_{i}: i \in I\right\}$ and $\left\{a_{i}\right.$: $i \in I\}$ within the context. Then $\alpha \in T(V)$ is defined by letting

$$
\alpha=\binom{e_{i}}{u_{i}}
$$

Let $S_{1}, S_{2}, \ldots, S_{n}$ be subspaces of a vector space V where $n \geq 2$. We call V the internal direct sum of $S_{1}, S_{2}, \ldots, S_{n}$, and we write

$$
V=S_{1} \oplus S_{2} \oplus \ldots \oplus S_{n}
$$

if $V=S_{1}+S_{2}+\ldots+S_{n}=\left\{s_{1}+s_{2}+\ldots+s_{n}: s_{i} \in S_{i}, 1 \leq i \leq n\right\}$ and $S_{i} \cap\left(S_{1}+\ldots+S_{i-1}+\right.$ $\left.+S_{i+1}+\ldots+S_{n}\right)=\{0\}$ for all $1 \leq i \leq n$. We note that if U is a subspace of V, then there exists a subspace T of V such that $V=U \oplus T$ (see [10], Theorem 1.4).

The external direct sum of a family of rings $\left\{R_{i}: i \in I\right\}$, denoted $\sum_{i \in I} R_{i}$, is the set of all sequences $\left(r_{i}\right)$ where $r_{i} \in R_{i}$ and at most finitely many r_{i} are non-zero.
3. Embedding theorems. In 2011, Sanwong proved that every regular semigroup S can be embedded in $F\left(S^{1}, S\right)$ (see [11], Theorem 3). Here, we prove a linear version of that result.

Remark 3.1 ([6, p. 182], Remark (c)). Let X be any nonempty set and R a ring with identity. Let V be the external direct sum $\sum R_{i}$ with the copies of R indexed by the set X. Then V is a free R-module on the set X such that X is a basis of V. In particular, if R is a field, then $V=\sum R_{i}$ is a vector space over R with dimension $|X|$.

Lemma 3.1 ([16], Theorem 3). Any semigroup S can be embedded in $T(U)$ where $U=\sum F_{i}$ is the external direct sum of the copies of a field F indexed by the semigroup S^{1} (U is a vector space with dimension $\left|S^{1}\right|$).

Theorem 3.1. Let W be a subspace of a vector space V. Then $T(W)$ can be embedded in $F(V, W)$.

Proof. It is clear that if $V=W$, then $T(W)=F(V, V)=F(V, W)$ and so $T(W) \cong F(V, W)$. But, when $W=\{0\}$, we see that $T(W)=\left\{\Theta_{W}\right\}$ and $F(V, W)=\left\{\Theta_{V}\right\}$. Thus, they are isomorphic.

Now, suppose that $\{0\} \neq W \nsubseteq V$. Let $W=\left\langle w_{i}\right\rangle$ and $V=\left\langle w_{i}\right\rangle \oplus\left\langle v_{j}\right\rangle$ for some subspace $\left\langle v_{j}\right\rangle$ of V. Then we have $\left\{w_{i}: i \in I\right\} \neq \varnothing \neq\left\{v_{j}: j \in J\right\}$. Let $\alpha \in T(W)$ and write

$$
\alpha=\binom{w_{i}}{w_{i} \alpha}
$$

Define $\alpha^{\prime} \in T(V, W)$ as follows:

$$
\alpha^{\prime}=\left(\begin{array}{cc}
w_{i} & v_{j} \\
w_{i} \alpha & 0
\end{array}\right)
$$

We obtain $V \alpha^{\prime} \subseteq W \alpha^{\prime}$, which implies that $\alpha^{\prime} \in F(V, W)$. For any element $w \in W$, we can write $w=\sum a_{i} w_{i}$ and so $w \alpha^{\prime}=\left(\sum a_{i} w_{i}\right) \alpha^{\prime}=\sum a_{i}\left(w_{i} \alpha^{\prime}\right)=\sum a_{i}\left(w_{i} \alpha\right)=\left(\sum a_{i} w_{i}\right) \alpha=w \alpha$. Also, if $\alpha, \beta \in T(W)$ and $w \in W$, then $w \alpha \in W$ and thus $(w \alpha) \beta^{\prime}=(w \alpha) \beta$. We define

$$
\Phi: T(W) \rightarrow F(V, W) \text { by } \alpha \Phi=\alpha^{\prime} \text { for all } \alpha \in T(W)
$$

We prove that Φ is a monomorphism. Let $\alpha, \beta \in T(W)$. If $\alpha \Phi=\beta \Phi$, then $\alpha^{\prime}=\beta^{\prime}$. For $w \in W$, $w=\sum a_{i} w_{i}$ and $w \alpha=\left(\sum a_{i} w_{i}\right) \alpha=\sum a_{i}\left(w_{i} \alpha\right)=\sum a_{i}\left(w_{i} \alpha^{\prime}\right)=\sum a_{i}\left(w_{i} \beta^{\prime}\right)=\sum a_{i}\left(w_{i} \beta\right)=$ $=\left(\sum a_{i} w_{i}\right) \beta=w \beta$. So, $\alpha=\beta$ and hence Φ is injective. Let $v \in V$. Then we can write $v=$ $=\sum b_{i} w_{i}+\sum c_{j} v_{j}$ and $v\left(\alpha^{\prime} \beta^{\prime}\right)=\left(\sum b_{i} w_{i}+\sum c_{j} v_{j}\right)\left(\alpha^{\prime} \beta^{\prime}\right)=\sum b_{i}\left(w_{i}\left(\alpha^{\prime} \beta^{\prime}\right)\right)+\sum c_{j}\left(v_{j}\left(\alpha^{\prime} \beta^{\prime}\right)\right)=$ $=\sum b_{i}\left(\left(w_{i} \alpha^{\prime}\right) \beta^{\prime}\right)+\sum c_{j}\left(\left(v_{j} \alpha^{\prime}\right) \beta^{\prime}\right)=\sum b_{i}\left(w_{i} \alpha\right) \beta^{\prime}+\sum c_{j}\left(0 \beta^{\prime}\right)=\sum b_{i}\left(w_{i} \alpha\right) \beta+\sum c_{j}(0)=$ $=\sum b_{i}\left(w_{i}(\alpha \beta)\right)+\sum c_{j}(0)=\sum b_{i}\left(w_{i}(\alpha \beta)^{\prime}\right)+\sum c_{j}\left(v_{j}(\alpha \beta)^{\prime}\right)=\left(\sum b_{i} w_{i}+\sum c_{j} v_{j}\right)(\alpha \beta)^{\prime}=$ $=v(\alpha \beta)^{\prime}$. Whence, $(\alpha \beta)^{\prime}=\alpha^{\prime} \beta^{\prime}$, it follows that $(\alpha \beta) \Phi=(\alpha \Phi)(\beta \Phi)$. Thus, Φ is a monomorphism and therefore $T(W)$ can be embedded in $F(V, W)$.

Theorem 3.1 is proved.
By Lemma 3.1, any semigroup S can be embedded in $T(W)$ for some vector space W with dimension $\left|S^{1}\right|$. And by Theorem 3.1, $T(W)$ can be embedded in $F(V, W)$ when V is any vector space which contains W. So, we have the following corollary.

Corollary 3.1. Any semigroup S can be embedded in $F(V, W)$ for some subspace W of V with $\operatorname{dim}(W)=\left|S^{1}\right|$, where V is any vector space which contains W.

Lemma 3.2. Let S be any semigroup and $x \in S$. We write $S^{1}=\left\{a_{i}: i \in I\right\}$ and define ρ_{x} : $S^{1} \rightarrow S^{1}$ by $a_{i} \rho_{x}=a_{i} x$ for all $i \in I$. Let F be any field and V the external direct sum $\sum F_{i}$ with the copies of F indexed by S^{1}. Then:
(1) ρ_{x} can be extended by linearity to an element of $T(V)$,
(2) the mapping $\rho: S \rightarrow T(V)$ is given by $x \rho=\rho_{x}$ for all $x \in S$, is a monomorphism.

Proof. See the proof as given in [16] (Theorem 3).
Lemma 3.3. Let $\sum F_{i}$ be the external direct sum of the copies of a field F indexed by some set I with $|I| \geq 2$. We fix $k \in I$ and let $J=I \backslash\{k\}$. Let G be the external direct sum of $\{0\} \cup\left\{F_{j}\right.$: $j \in J\}$, where $0 \in F_{k}=F$, and $\sum F_{j}$ is the external direct sum of the copies of a field F indexed by the set J. Then:
(1) G is a subspace of $\sum F_{i}$,
(2) $\sum F_{j}$ is isomorphic to G.

Proof. (1) It is easy to verify that G is a subspace of $\sum F_{i}$.
(2) For each $\left(r_{j}\right) \in \sum F_{j}$, we construct an element $\left(r_{i}^{\prime}\right)$ in G by

$$
\left(r_{i}^{\prime}\right)= \begin{cases}0, & \text { if } i=k \\ r_{j}, & \text { if } i \in I \backslash\{k\}=J\end{cases}
$$

Define $\varphi: \sum F_{j} \rightarrow G$ by $\left(r_{j}\right) \varphi=\left(r_{i}^{\prime}\right)$ for all $\left(r_{j}\right) \in \sum F_{j}$. Then φ is bijective. Let $\left(r_{j}\right),\left(s_{j}\right) \in$ $\in \sum F_{j}$ and $c \in F$. It is routine to show $\left[\left(r_{j}\right)+\left(s_{j}\right)\right] \varphi=\left(r_{j}\right) \varphi+\left(s_{j}\right) \varphi$ and $\left[c\left(r_{j}\right)\right] \varphi=c\left[\left(r_{j}\right) \varphi\right]$. Thus, φ is an isomorphism and so $\sum F_{j} \cong G$.

Lemma 3.3 is proved.
Theorem 3.2. Any regular semigroup S can be embedded in $F(V, W)$ for some subspace W of a vector space V, where $\operatorname{dim}(V)=\left|S^{1}\right|$ and $\operatorname{dim}(W)=|S|$.

Proof. Assume that S is a regular semigroup and let V be the external direct sum $\sum F_{i}$ with the copies of a field F indexed by S^{1}. We note that $V=\left\langle S^{1}\right\rangle$ and $\operatorname{dim}(V)=\left|S^{1}\right|$ by Remark 3.1. There are two cases to consider.

Case 1: $1 \in S$. Then we have $S^{1}=S$. Let $W=V$. It follows from Lemma 3.1 that S can be embedded in $T(V)=F(V, W)$ such that $\operatorname{dim}(W)=\operatorname{dim}(V)=\left|S^{1}\right|=|S|$.

Case 2: $1 \notin S$. This implies that $\left|S^{1}\right| \geq 2$ and $S=S^{1} \backslash\{1\}$. Let G be the external direct sum of $\{0\} \cup\left\{F_{j}: j \in S\right\}$, where $0 \in F_{1}=F=F_{j}$ for all $j \in S$. It follows from Lemma 3.3 that $\sum F_{j} \cong G \subseteq V$, where $\sum F_{j}$ is the external direct sum of $\left\{F_{j}: j \in S\right\}$ with the copies of the field F indexed by S. Here, we let $W=\sum F_{j}$. Thus, we have $W=\sum F_{j}=\langle S\rangle, \operatorname{dim}(W)=|S|$ and $W \subseteq V$ in the sense of embedding. Now, we write $S^{1}=\left\{a_{i}: i \in I\right\}$. For each $x \in S$, define ρ_{x} : $S^{1} \rightarrow S^{1}$ by $a_{i} \rho_{x}=a_{i} x$ for all $i \in I$. Then by Lemma $3.2(1)$, we obtain $\rho_{x} \in T(V)$ and it is clear that $a_{i} \rho_{x}=a_{i} x \in S$ for all $i \in I$. Notice that there exists $t \in S$ such that $x=x t x$ since S is regular. We prove $\rho_{x} \in F(V, W)$. Let $v \rho_{x} \in V \rho_{x}$ for some $v \in V=\left\langle S^{1}\right\rangle$. So, we can write $v=\sum d_{i} a_{i}$ and $v \rho_{x}=\sum d_{i}\left(a_{i} \rho_{x}\right) \in\langle S\rangle=W$. Whence, $V \rho_{x} \subseteq W$. Next, we prove $V \rho_{x} \subseteq W \rho_{x}$. If $v=\sum d_{i} a_{i}$ for some $a_{i} \in S$, then $v \rho_{x}=\left(\sum d_{i} a_{i}\right) \rho_{x} \in\langle S\rangle \rho_{x}=W \rho_{x}$. If $v=d \cdot 1$ for some scalar $d \in F$, then $v \rho_{x}=(d \cdot 1) \rho_{x}=d\left(1 \rho_{x}\right)=d x=d(x t x)=d((x t) x)=d\left((x t) \rho_{x}\right)=(d(x t)) \rho_{x} \in\langle S\rangle \rho_{x}=W \rho_{x}$. Hence, $V \rho_{x} \subseteq W \rho_{x}$ and so $\rho_{x} \in F(V, W)$. We define $\rho: S \rightarrow F(V, W)$ by $x \rho=\rho_{x}$ for all $x \in S$. Then by Lemma $3.2(2)$, we have ρ is a monomorphism. Therefore, we conclude that S can be embedded in $F(V, W)$.

Theorem 3.2 is proved.
4. Maximal subsemigroups. In 2017, Sommanee and Sangkhanan determined the maximal regular subsemigroups of $F(V, W)$, when W is a finite dimensional subspace of a vector space V over a finite field F (see [14], Theorem 4.9).

In general, if S is a regular semigroup and T is a maximal regular subsemigroup of S, then T may not be a maximal subsemigroup of S (see [19, 20], Theorem 2). Here, we prove that the maximal subsemigroups and the maximal regular subsemigroups of $F(V, W)$ coincide.

We begin by recalling some notations and results from [14] that will be useful in this section.
Lemma 4.1 ([14], Lemma 2.3). Let W be a subspace of a vector space V and $\alpha, \beta \in F(V, W)$. Then:
(1) $\alpha \mathcal{J} \beta$ if and only if $\operatorname{dim}(V \alpha)=\operatorname{dim}(V \beta)$,
(2) $\alpha \mathcal{H} \beta$ if and only if $V \alpha=V \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$,
where $\operatorname{ker} \alpha=\{v \in V: v \alpha=0\}$.
Lemma 4.2 ([14], Theorem 2.4). Let W be a subspace of a vector space V. Then the ideals of $F(V, W)$ are precisely the sets $Q_{k}=\{\alpha \in F(V, W): \operatorname{dim}(V \alpha) \leq k\}$, where $0 \leq k \leq \operatorname{dim}(W)$.

We note that Q_{k} is a regular subsemigroup of $F(V, W)$ (see [14], Lemma 2.5).
Let $n \geq 0$ be an integer and W an n-dimensional subspace of a vector space V over a finite field F.

For $0 \leq k \leq n=\operatorname{dim}(W)$, define $J(k)=\{\alpha \in F(V, W): \operatorname{dim}(V \alpha)=k\}$. Then $J(k)$ is a \mathcal{J}-class of $F(V, W)$. Let Q_{k} be defined as in Lemma 4.2. We have $Q_{k}=J(0) \cup J(1) \cup \ldots \cup J(k)$ and $Q_{n}=F(V, W)$.

Remark 4.1. The following facts are directly obtained from the definitions of $J(k)$ and Q_{k} :
(1) $Q_{0}=J(0)$ contains exactly one element Θ_{V}, the zero map;
(2) for each $\alpha \in J(n), V \alpha=W$ since $V \alpha \subseteq W$ and $\operatorname{dim}(V \alpha)=n=\operatorname{dim}(W)$ is finite.

We will use the notation $G L(U)$ as a set of all automorphisms of a vector space U over a field F. It is well-known that $G L(U)$ is a group under the composition of functions.

Lemma 4.3 ([14], Lemma 3.2). Let $\varepsilon \in F(V, W)$ be an idempotent. Then $H_{\varepsilon} \cong G L(V \varepsilon)$.
From now on, we suppose that $n \geq 1$ and let $E(J(n))=\left\{\varepsilon_{p}: p \in P\right\}$ be the set of all idempotents in $J(n)$. Then we have

$$
J(n)=\bigcup_{p \in P} H_{\varepsilon_{p}}
$$

is a disjoint union of groups all of which are isomorphic (see [14], Lemma 3.3). Moreover, $J(n)$ is a regular subsemigroup of $F(V, W)$ (see [14], Lemma 3.6).

Lemma 4.4 ([14], Lemma 4.1). $J(n-1) \subseteq J(n) \alpha J(n)$ for all $\alpha \in J(n-1)$.
Lemma 4.5 ([14], Theorem 4.2). For $n \geq 2$, the set $Q_{n-2} \cup J(n)$ is a maximal regular subsemigroup of $F(V, W)$.

For each $\varepsilon_{p} \in E(J(n)), H_{\varepsilon_{p}} \cong G L\left(V \varepsilon_{p}\right)=G L(W)$ by Lemma 4.3 and Remark 4.1 (2). We let $\Phi_{p}: H_{\varepsilon_{p}} \rightarrow G L(W)$ be an isomorphism and U a fixed maximal subgroup of $G L(W)$. For each $p \in P$, we define

$$
M_{p}=U \Phi_{p}^{-1} .
$$

Then M_{p} is a maximal subgroup of $H_{\varepsilon_{p}}$ for all $p \in P$ (for details, see [14, p. 409]).
Lemma 4.6 ([14], Lemma 4.3). Let M_{p} be defined as above and $M=\bigcup_{p \in P} M_{p}$. Then M is a maximal regular subsemigroup of $J(n)$.

Lemma 4.7 ([14], Theorem 4.4). Let M be as in Lemma 4.6. Then $Q_{n-1} \cup M$ is a maximal regular subsemigroup of $F(V, W)$.

Lemma 4.8 ([14], Lemma 4.6). T is a maximal regular subsemigroup of $J(n)$ if and only if there is a maximal subgroup U of $G L(W)$ such that $T=\bigcup_{p \in P} M_{p}$ with $M_{p}=U \Phi_{p}^{-1}$, where Φ_{p} is defined as previous Lemma $4.6(p \in P)$.

Recall that if A is a subset of a semigroup S, then $\langle A\rangle$ denotes the subsemigroup of S generated by A.

Lemma 4.9 ([14], Lemma 4.7). For $0 \leq k \leq n-1, Q_{k}=\langle J(k)\rangle$.
To prove the main results, we prepare the following two lemmas.
Lemma 4.10. Every subsemigroup of $J(n)$ is a regular subsemigroup of $J(n)$.
Proof. Assume that T is a subsemigroup of $J(n)=\bigcup_{p \in P} H_{\varepsilon_{p}}$. Let $R=\left\{r \in P: T \cap H_{\varepsilon_{r}} \neq \varnothing\right\}$ and $T_{r}=T \cap H_{\varepsilon_{r}}$ for all $r \in R$. It is clear that $T=\bigcup_{r \in R} T_{r}$. Since $T_{r}=T \cap H_{\varepsilon_{r}} \neq \varnothing$, we obtain T_{r} is a finite subsemigroup of the group $H_{\varepsilon_{r}}$. Thus, T_{r} is a subgroup of $H_{\varepsilon_{r}}$ and so T_{r} is a regular subsemigroup of $H_{\varepsilon_{r}}$ for all $r \in R$. Therefore, T is a regular subsemigroup of $J(n)$.

Lemma 4.10 is proved.
From Lemma 4.10, we easily verify the following lemma.
Corollary 4.1. The maximal subsemigroups and the maximal regular subsemigroups of $J(n)$ coincide.

The following lemma is directly obtained from Lemma 4.8 and Corollary 4.1.
Lemma 4.11. T is a maximal subsemigroup of $J(n)$ if and only if there is a maximal subgroup U of $G L(W)$ such that $T=\bigcup_{p \in P} M_{p}$ with $M_{p}=U \Phi_{p}^{-1}$ where Φ_{p} is defined as previous Lemma $4.6(p \in P)$.

Lemma 4.12. For $n \geq 2, Q_{n-2} \cup J(n)$ is a maximal subsemigroup of $F(V, W)$.
Proof. Let $n \geq 2$. Then we have $Q_{n-2} \cup J(n)$ is a regular subsemigroup of $F(V, W)$ by Lemma 4.5. Thus, it is a subsemigroup of $F(V, W)$. To prove that $Q_{n-2} \cup J(n)$ is a maximal subsemigroup of $F(V, W)$, suppose that there is a subsemigroup S of $F(V, W)$ such that $Q_{n-2} \cup$ $\cup J(n) \varsubsetneqq S \subseteq F(V, W)$. We prove that S is a regular subsemigroup of $F(V, W)$. Let α be any element in S. Then there exists $\alpha^{\prime} \in F(V, W)$ such that $\alpha=\alpha \alpha^{\prime} \alpha$, since $F(V, W)$ is regular. We note that if $\alpha \in Q_{n-2} \cup J(n)$, then α is a regular element in S, since $Q_{n-2} \cup J(n)$ is regular and $Q_{n-2} \cup J(n) \subseteq S$. Suppose that $\alpha \notin Q_{n-2} \cup J(n)$, that is, $\alpha \in J(n-1)$. We assume that $\alpha^{\prime} \notin S$. Thus, $\alpha^{\prime} \in J(n-1) \backslash S$ and we can write $\alpha^{\prime}=\beta \alpha \gamma$ for some $\beta, \gamma \in J(n) \subseteq S$ by Lemma 4.4. This implies that $\alpha^{\prime} \in S$, a contradiction. Whence, $\alpha^{\prime} \in S$ and so S is a regular subsemigroup of $F(V, W)$. Since $Q_{n-2} \cup J(n)$ is a maximal regular subsemigroup of $F(V, W)$, we get $S=F(V, W)$. Therefore, $Q_{n-2} \cup J(n)$ is a maximal subsemigroup of $F(V, W)$.

Lemma 4.12 is proved.
Lemma 4.13. Let M be as in Lemma 4.6. Then $Q_{n-1} \cup M$ is a maximal subsemigroup of $F(V, W)$.

Proof. Since $Q_{n-1} \cup M$ is a regular subsemigroup of $F(V, W)$ by Lemma 4.7, it is a subsemigroup of $F(V, W)$. We prove that $Q_{n-1} \cup M$ is a maximal subsemigroup of $F(V, W)$. Let S be a subsemigroup of $F(V, W)$ such that $Q_{n-1} \cup M \varsubsetneqq S \subseteq F(V, W)$. We see that $S \cap J(n) \neq \varnothing$. It follows that $S \cap J(n)$ is a subsemigroup of $J(n)$. Then by Lemma 4.10, we get that $S \cap J(n)$ is a regular subsemigroup of $J(n)$. Thus, $S=Q_{n-1} \cup(S \cap J(n))$ is a regular subsemigroup of $F(V, W)$. Since $Q_{n-1} \cup M$ is a maximal regular subsemigroup of $F(V, W)$, we obtain $S=F(V, W)$. Therefore, $Q_{n-1} \cup M$ is a maximal subsemigroup of $F(V, W)$.

Lemma 4.14. Let S be any maximal subsemigroup of $F(V, W)$. Then the following statements hold:
(1) $S \cap J(n) \neq \varnothing$,
(2) $S \cap J(n)$ is a maximal subsemigroup of $J(n)$.

Proof. (1) If $S \cap J(n)=\varnothing$, we get $S \subseteq Q_{n-1} \varsubsetneqq Q_{n-1} \cup M \varsubsetneqq F(V, W)$, where M is defined in Lemma 4.6. But $Q_{n-1} \cup M$ is a maximal subsemigroup of $F(V, W)$ by Lemma 4.13, which contradicts the maximality of S. Therefore, $S \cap J(n) \neq \varnothing$.
(2) It follows from (1) that $S \cap J(n)$ is a subsemigroup of $J(n)$. If $S \cap J(n)$ is not maximal, then there exists a maximal subsemigroup T of $J(n)$ such that $S \cap J(n) \varsubsetneqq T \varsubsetneqq J(n)$. It is easy to see that $Q_{n-1} \cup T$ is a subsemigroup of $F(V, W)$ with $S \nsubseteq Q_{n-1} \cup T \nsubseteq F(V, W)$, which contradicts the maximality of S. Therefore, $S \cap J(n)$ is a maximal subsemigroup of $J(n)$.

Lemma 4.14 is proved.
Theorem 4.1. Let $n \geq 2$ and S a maximal subsemigroup of $F(V, W)$. Then S is either of the form:
(1) $Q_{n-2} \cup J(n)$
or
(2) $Q_{n-1} \cup M$, where M is defined in Lemma 4.6.

Proof. By Lemmas 4.12 and 4.13, we have $Q_{n-2} \cup J(n)$ and $Q_{n-1} \cup M$ are maximal subsemigroups of $F(V, W)$. On the other hand, since $S \cap J(n) \neq \varnothing$ by Lemma 4.14 (1). So, we consider the following two cases.

Case 1: $S \cap J(n)=J(n)$. Hence, $J(n) \subseteq S$. We suppose that $S \nsubseteq Q_{n-2} \cup J(n)$. Then there exists $\alpha \in S$ and $\alpha \notin Q_{n-2} \cup J(n)$, that is, $\alpha \in J(n-1)$. It follows from Lemma 4.4 that $J(n-1) \subseteq J(n) \alpha J(n) \subseteq S \alpha S \subseteq S$, and so $Q_{n-1}=\langle J(n-1)\rangle \subseteq S$ by Lemma 4.9. Whence, $F(V, W)=Q_{n-1} \cup J(n) \subseteq S \subseteq F(V, W)$. Thus, $S=F(V, W)$, which contradicts the maximality of S. Therefore, $S \subseteq Q_{n-2} \cup J(n)$. But, $Q_{n-2} \cup J(n)$ is a maximal subsemigroup of $F(V, W)$ by Lemma 4.12. This implies that $S=Q_{n-2} \cup J(n)$.

Case 2: $S \cap J(n) \nsubseteq J(n)$. By Lemma 4.14 (2), we have $S \cap J(n)$ is a maximal subsemigroup of $J(n)$. Then by Lemma 4.11, we get that $S \cap J(n)=\bigcup_{p \in P} M_{p}$, where $M_{p}=U \Phi_{p}^{-1}$ for all $p \in P$ with a fixed maximal subgroup U of $G L(W)$. We let $M=\bigcup_{p \in P} M_{p}$. Then $M=S \cap J(n)$. Since $S \subseteq Q_{n-1} \cup(S \cap J(n))=Q_{n-1} \cup M$ and $Q_{n-1} \cup M$ is a maximal subsemigroup of $F(V, W)$ by Lemma 4.13, we obtain $S=Q_{n-1} \cup M$.

Theorem 4.1 is proved.
Corollary 4.2. For $n=1$, each maximal subsemigroup of $F(V, W)$ must be one of the forms: $J(1)$ or $\left\{\Theta_{V}\right\} \cup M$, where M is defined in Lemma 4.6.

Proof. Assume that $n=1$. By Lemma 4.13, we obtain that $Q_{0} \cup M=\left\{\Theta_{V}\right\} \cup M$ is a maximal subsemigroup of $F(V, W)$ where M is defined in Lemma 4.6. Furthermore, if $n=1$, then $F(V, W)=J(0) \cup J(1)=\left\{\Theta_{V}\right\} \cup J(1)$, that is, $J(1)=F(V, W) \backslash\left\{\Theta_{V}\right\}$. And, since $J(1)$ is a subsemigroup of $F(V, W)$, it is clear that $J(1)$ is a maximal subsemigroup of $F(V, W)$.

Let S be any maximal subsemigroup of $F(V, W)$. Then we consider two cases.
Case 1: $\Theta_{V} \notin S$. Then $S \subseteq J(1)$. Since $S \subseteq J(1) \varsubsetneqq F(V, W)$ and $J(1)$ is a subsemigroup of $F(V, W)$, whence $S=J(1)$.

Case 2: $\Theta_{V} \in S$. By Lemma $4.14(1)$, we have $S \cap J(1) \neq \varnothing$. If $S \cap J(1)=J(1)$, we get that $S=F(V, W)$, a contradiction. Hence, $S \cap J(1) \varsubsetneqq J(1)$. Then by the same argument as in the proof of Theorem 4.1 (Case 2), we obtain $S=Q_{0} \cup M=\left\{\Theta_{V}\right\} \cup M$, where M is defined in Lemma 4.6.

Corollary 4.2 is proved.
Next, we consider the case when $V=W$ and V is a finite dimensional vector space with $\operatorname{dim}(V)=n$. Then we have $F(V, W)=T(V)$, and it is easy to verify that $J(n)=G L(V)$. So, we establish the following corollary.

Corollary 4.3. Let V be an n-dimensional vector space over a finite field $F(n \geq 2)$ and S a maximal subsemigroup of $T(V)$. Then S is either of the form:
(1) $Q_{n-2} \cup G L(V)$
or
(2) $Q_{n-1} \cup M$, where M is a maximal subgroup of $G L(V)$.

References

1. R. A. Bairamov, On the problem of completeness in a symmetric semigroup of finite degree, Diskret Analiz., 8, 3-26 (1966) (in Russian).
2. A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, vol. 1, Math. Surveys and Monogr., 7 (1961).
3. A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, vol. 3, Math. Surveys and Monogr., 7 (1967).
4. J. East, J. D. Michell, Y. Péresse, Maximal subsemigroups of the semigroup of all mappings on an infinite set, Trans. Amer. Math. Soc., 367, № 3, 1911-1944 (2015).
5. J. M. Howie, An introduction to semigroup theory, Acad. Press, London (1976).
6. T. W. Hungerford, Algebra, Springer-Verlag, New York (1974).
7. S. Mendes-Gonçalves, R. P. Sullivan, Baer-Levi semigroups of linear transformations, Proc. Roy. Soc. Edinburgh Sect. A, 134, № 3, 477-499 (2004).
8. S. Nenthein, P. Youngkhong, Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. and Appl. (PU.M.A.), 16, № 3, 307-314 (2005).
9. S. Nenthein, Y. Kemprasit, Regular elements of some semigroups of linear transformations and matrices, Int. Math. Forum, 2, № 4, 155-166 (2007).
10. S. Roman, Advanced linear algebra, 3rd ed., Grad. Texts in Math., Springer (2008).
11. J. Sanwong, The regular part of a semigroup of transformations with restricted range, Semigroup Forum, 83, № 1 , 134-146 (2011).
12. J. Sanwong, W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. and Math. Sci., Article ID 794013 (2008), 11 p.
13. W. Sommanee, The regular part of a semigroup of full transformations with restricted range: maximal inverse subsemigroups and maximal regular subsemigroups of its ideals, Int. J. Math. and Math. Sci., Article ID 2154745 (2018), 9 p.
14. W. Sommanee, K. Sangkhanan, The regular part of a semigroup of linear transformations with restricted range, J. Aust. Math. Soc., 103, № 3, 402 - 419 (2017).
15. W. Sommanee, J. Sanwong, Rank and idempotent rank of finite full transformation semigroups with restricted range, Semigroup Forum, 87, № 1, 230-242 (2013).
16. R. P. Sullivan, Embedding theorems for semigroups of generalised linear transformations, Southeast Asian Bull. Math., 36, № 4, 547-552 (2012).
17. R. P. Sullivan, Semigroups of linear transformations with restricted range, Bull. Aust. Math. Soc., 77, № 3, 441-453 (2008).
18. J. S. V. Symons, Some results concerning a transformation semigroup, J. Aust. Math. Soc., 19, № 4, $413-425$ (1975).
19. H. Yang, X. Yang, Maximal subsemigroups of finite transformation semigroups $K(n, r)$, Acta Math. Sin. (Engl. Ser.), 20, № 3, 475-482 (2004).
20. T. You, Maximal regular subsemigroups of certain semigroups of transformations, Semigroup Forum, 64, № 3, 391-396 (2002).
