DOI: 10.37863/umzh.v73i12.1290
UDC 517.5
A. Aberqi, J. Bennouna, M. Elmassoudi (Sidi Mohammed Ben Abdellah Univ., Laboratory LAMA, Morocco)

NONLINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA
IN ORLICZ SPACES

HEJITHIAHI EJINITAYHI PIBHAHHS 3 JAHUMU MIPHA
Y ITPOCTOPAX OPJIIYA

In this article, we study the existence result of the unilateral problem
Au — div(®(z,u)) + H(z,u, Vu) = u,

where Au = —div(a(z,u, Vu)) is a Leray-Lions operator defined on Sobolev—Orlicz space D(A) C Wg Las(9),
€ LYQ) + W E5 (), where M and M are two complementary N -functions, the first and the second lower terms ®
and H satisfies only the growth condition and any sign condition is assumed and u > ¢, where ( is a measurable function.

BuBYEHO NMTaHHS iCHYBaHHS ISl OHOCTOPOHHBOI 3a/a4i
Au — div(®(z,u)) + H(z,u, Vu) = p,

ne Au = —div(a(x,u, Vu)) — omeparop Jlepe—JlioHca, sikuii BusHadeno y mpocropi CoGomeBa—Opmiiva D(A)
C W Lm(Q), p € LY(Q) + W 'E(Q), M i M — nsi nonatxosi N -dymkuii, mepumii i apyruit unenn @ i
3aJJ0BOJIBHSIOTH JIMIIIE YMOBY 3pOCTaHHs Ta Oylb-IKy YMOBY 3HaKa, u > ¢, ( — BUMipHa (YHKIIis.

C
H

1. Introduction. Let Q be a bounded open domain in IRY, N > 2, and consider the following
strongly nonlinear Dirichlet problem with an obstacle:

u>(¢ ae. in £,
—div(a(z,u, Vu)) — div(®(z,u)) + H(z,u,Vu) =p on €, (1)
u=0 on 09,

where p € L'(Q) + W1 Eg(Q).

Under our assumptions, the problem (1) does not admit, in general, a weak solution since the
term ® may not belong to (L'(€2))" and a lack of coercivity for the two terms ® and H. Thus to
overcome this difficulty, we use in this paper the framework of entropy solution, which need less
regularity than the usual weak solution. Knowing that the notion of entropy solutions have been
developed by P. Bénilan et al. [9] for the study of nonlinear elliptic problems.

In fact, in the classical Sobolev space VVO1 P(Q2), the paper [10] where ® = 0, H has polynomial
growth and p is a measure in M;(Q2), L. Boccardo et al. proved the existence results and in [11]
have demonstrated the decomposition theorem of the Radon measure and studied the existence and
uniqueness of entropy solution. For more results we refer to [3, 4].
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To our knowledge, it is not yet possible to decompose the Radon measure in setting Orlicz space,
therefore the authors studied the problem (1) with the second member as the sum of an element
from W!E(Q2) and of a function from L'(Q). In the first J. P. Gossez and V. Mustonen in [13]
proved the existence of entropy solutions for nonlinear problem (1) where p € W_IEM(Q) and H
satisfies sign condition. A. Benkirane and J. Bennouna in [7] proved the existence and uniqueness
of the solution of unilateral problem where ® = H = 0 and p € L'(Q), L. Ahrouch et al. in [5]
have proved the existence results where H = 0, ® € CO(IRN, RY) and p € LY(Q) + W L1E(Q).
Recently A. Aberqi et al. in [2] proved the existence and uniqueness results for problem (1) in the
parabolic case and L'-sources.

In this article, we are interested in proving the existence of entropy solution for unilateral problem
associated to (1) where ® depends on z,w and satisfies only the growth condition and H is a
nonlinear lower-order term having natural growth with respect to |Vu|. The second member of (1)
as p = f —div(F) with f € L*(Q2) and F € (E57(Q))".

The main difficulties of this problem are in the first the lack of coercivity lower order term @
that makes the operator that governs the equation, non coercive. The second lower order term H
is controlled by a non-polynomial growth (see (8)) and no sign condition is assumed. Finally, the
anisotropic function M defining Orlicz space WLy, (2) does not satisfy the As-condition.

We are not concerned here with the uniqueness of the solution. In fact, the uniqueness problem
being a rather delicate one, due to a counter-example of J. Serrin [15]. Note that our result generalizes
that of 5, 7, 10], to the case of Orlicz— Sobolev spaces.

This paper is organized as follows. Section 2 contains some preliminaries of Orlicz spaces and
a technical lemmas. Section 3 is devoted to the specification of the assumptions on a, ®, K and p.
Main results are stated in Section 4, where we give and prove the principal theorem.

2. Orlicz spaces and technical lemmas. Let M : IR — IR" be an N-function, that is, M
is continuous, convex with M (t) > 0 for t > 0, M(t)/t — 0 ats t — 0, and M(t)/t — +o0 as

t — +o00. Equivalently, M admits the representation M (t) = / a(s)ds, where a: RT — IR" is
0
nondecreasing, right continuous with a(0) = 0, a(t) > 0 for ¢t > 0, and a(t) — +o0 as t — +o0.
t
The N-function M conjugate to M is defined by M (t) = / a(s)ds, where a: IRt — IRT is

0
given by a(t) = sup{s: a(s) < t}. (See [1] for more details.) We will extend these NN -functions
into even functions on all IR. » . . .
t — t
Example1. For M(t) = u, M(t) = u, where — + — = 1 and p,q € (1;+400). For
_p q P q
M(t) = exp(t) — 1 — [t], M(t) = (1 + |t])In (1 + [¢]) — [t].
Let P and @ be two N -functions. P < () means that P grows essentially less rapidly than @,
P(t)
Q(et)
Proposition 1. P < M if and only if, for all € > 0, there exists a constant c. such that

that is, for each € > 0, limy 4o

P(t) < M(et)+c. forall t>0. )

Proof. Let £ > 0, then, by the definition of P < M, there exists t. > 0 such that, for all ¢ > ¢.,
P(t) < M(et). On the other hand, for ¢ € [0, t.], by the continuity of P, there exists a constant C.
such that P(t) < C¢, where C. = supyc[o.) P(t). So, from the above we have (2).
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The Orlicz class K (£2) (resp., the Orlicz space Ljs(€2)) is defined as the set of (equivalence
classes) real valued measurable functions u on {2 such that

/M(u(x))dx < 400 | resp., /M (u()\az)) dx < +oo  forsome A\ >0
Q

The set Lj;(92) is Banach space under the norm

u(z)

lullarg = inf 4 A > 0: /M <A) iz <1
Q

and K7(2) is a convex subset of Lj/(£2) . The closure in Ly, (€2) of the set of bounded measurable
functions with compact support in Q is denoted by Ej/(€2). The dual Ej/(€) can be identified with
L77(€2) by means of the pairing | uvdz, and the dual norm of L37(€) is equivalent to ||ul|37 o

Q
We now turn to the Orlicz—Sobolev space, WLy () (resp., WLEy(Q)) is the space of all

functions u such that u and its distributional derivatives up to order 1 lie in Ly () (resp., Ear(Q)).
It is a Banach space under the norm

ou
8.7)@'

lulliar = lullae + > ]

1<i<N

M.Q

Thus, WLy (92) and WEy () can be identified with subspaces of product of (N + 1) copies
of Ljr(£2) . Denoting this product by IILj;, we will use the weak topologies o (IIL s, I1Ey;) and
o(IIL s, I L7z7). The space Wy Epg(€2) is defined as the (norm) closure of the Schwartz space D(€2)
in W!E(Q) and the space W L (Q2) as the o(IIL s, I1E57) closure of D(Q) in WL (Q).

Let W 'Li7(Q) (resp., W1E77(€2)) denote the space of distributions on €2 which can be
written as sums of derivatives of order < 1 of functions in Ly;(€2) (resp., E77(€2)). It is a Banach
space under the usual quotient norm (see [1]). We recall the following lemmas.

Lemma 1 [14]. For all u € W3 Ly (Q) with meas (Q) < +oo one has

/M <|1§|> d < /M(\vundx, 3)
Q Q

where 6 = diam(SQ) is the diameter of ().
Lemma 2 [8]. Let Q be an open subset of RN with finite measure. Let M, P and Q be N-
functions such that Q < P, and let f: Q) X IR — IR be a Carathéodory function such that

1f(z,8)] < c(x) + kP M(ky|s|) ae z€Q, forall sec IR,

where ki, ko are real constants and c(x) € Eg(Q).
Then the Nemytskii operator defined by N¢(u)(x) = f(x,u(x)) is strongly continuous from

1 1
P (EM(Q), k:> = {u € Ly (Q): d(u, Eyp(Q)) < k:} into Eqg(Q).
2 2
Lemma 3 [14]. Let u, and u belong to Lp(Q). If u, — u with respect to the modular
convergence, then u, — u for o(I1Lyr, ILLy;).
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Lemma 4 [14]. Let Q) has the segment property. Then, for each v € WolL M (), there exists a
sequence v, € D(Q) such that v, converges to v for the modular convergence in v € Wi Ly (Q).
Furthermore, if v € Wi Ly (Q) N L®(Q), then

lvnll Lo (@) < (N 4+ 1)[|v]|Loo (-

3. Formulation of the problem. Let () be an open bounded subset of RN, N > 2, and let M
and P be two N -functions such that P < M.
a: QxR x RY — IRY is Carathéodory function such that, for a.e. 2 € Q and for all s € IR,

¢ & e RN, &£ ¢,
la(@, 5,€)] < Blao(x) + M P(ki|s])) + M M(kol€])) )
with 3, k1, ko > 0 and ao(-) S EM(Q),

(a(fn,s,ﬁ) - a(:z‘,s,f*))(& - 5*) > 07 (5)

a(z, 8,€).€ > aM(|¢]) + M(|s]). (6)

®: Q x IR — IRV is a Carathéodory function such that

[®(z, )| < e(x)M " M(ap)s|), (7)

2
H: QxR x RN — IR is a Carathéodory function such that

1
where c(-) € L>(€2) such that [|c(-)|[ () < % and 0 < ap < min (1, >
«

|H(z,5,€)] < h(z) + p(s)M(I€]), ®)
p: IR — IR" is a continuous positive function which belongs L*(IR) N L>°(IR) and h belongs
to L1(Q).
Let pn € LY(Q) + W' E37(Q) such that
p=f—div(F) with feLQ) and F € (EQ)". )
Given a negative measurable obstacle function (: Q2 — IR,

Ke={u€WiLy(Q):u>¢ ae. in Q}, (10)

and we suppose that K¢ N L>(Q) # @.
Throughout the paper, 7} denotes the truncation at height £ > 0:

Ti(r) = max (—k; min (k,7)).

Definition 1. A4 measurable function u, defined on ), is said an entropy solution of problem
(1), if it satisfies the following conditions:

u€ D(A)NWyLy(Q), u>(,
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NONLINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES 1591

/a(:n, u, Vu)VTi(u — v)dx + / O(x,u)VTi(u—v)dx +
Q Q

+ [ H(z,u, Vu)VTp(u —v)de < | fTp(u—v)de + | FVTp(u —v)dx
/ oo

Vo e KcNL®(Q) Yk > 0. (11)

4. Main results.
Theorem 1. Assume that (4)—(10) hold true. Then there exists at least one solution of the
unilateral problem (1) in the sense of the Definition 1.

Remark 1. 1. The condition (6) can be replaced by the weaker one
a(w,s,§)§ = aM([¢]) + M(|s|) — b(),

where b(x) is in L!-function.
2. The results obtained in Theorem 1, remain true if we replace (7) by the general growth
condition

|®(z, )| < e(x)P P(|s)), (12)

where ¢(-) € Ep(2) and P < M.
3. Forany s € IR and o/ > 0, we have

D (_HpHLl(IR)> <exp (£G(s)) < exp <HpHLl(IR)> ) (13)

o o

where G(s) = /08 @dr.

a/

Remark?2. 1. For the sake of the simplification, the explicit dependence on z of the functions
a,® and H will be omited so that a(z,u,Vu) = a(u, Vu), ®(z,u) = ®(u) and H(z,u, Vu) =
= H(u, Vu).

2. We will denote by C; with ¢ = 1,2,... any constant which depends on the various quantities
of the problem but not on n.

Proof of Theorem 1. Step 1: Approximate problem. For each n > 0, we define the approxima-
tions

H{(s,§)

1— a.e. :,UE Q,

an(xa 5’5) = a(Tn(5)7£)a (I)n(xas) = q)(Tn(S))’ Hn($a 575) =

forall s € IR and ¢ € RYN.
Let (f,)n be a sequence of a smooth functions such that f,, — f strongly in L!(2). Let us now
consider the approximate problem

Up € Kg ﬂD(A),
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/an(un, Vun)V(un, —v)dzr + /@n(un)V(un —v)dx +
Q Q

+ [ Hy(un, Vuy)(up —v)dz < | fo(u, —v)de + | FV(up, —v)dz Yv € K. (14)
/ [tz

Since H,, is bounded for any fixed n > 0, there exists at least one solution u,, € WLy (Q) of (14)
(see [13]).

Now, let show that w,, converges to a function u, where u is the solution of the unilateral
problem (1).

Step 2: A priori estimates.

Lemma 5. Let choose {uy}, be a solution of the approximate problem (14). Then, for all
k > 0, there exist two positive constants C1 and Cy such that

/M(\VTk(un)Ddz < kCy + Cy. (15)
Q

Proof. Let vy € K NL>() ﬂWolEM(Q) and fix k > 0. Let u,, —exp (G (un))T)(unp —vo) " as
a test function in problem (14), where G(s) = / p(r)
0

Oé/

dr, and o/ > 0 is a parameter to be specified

later. We get

/an(un, Vun)V (exp(G(un)) T (un — vo) ") dz +
Q

+/®n(un)v (exp(G(un))Th(wn — vo)*) dz +
Q

—i—/Hn(un, Vuy,) exp(G(un)) Tk (uy, — vo) Tdr <
Q

< ke (V02 ) 1oy + [ 9 (exp(Gua) it = ) ) (16)
Q

In the second term of the left-hand side of (16) we use (7), Lemma 1 and Young inequality to get

/ By (1) V (exp( G (1) Ti (1t — v0) ) <
Q

el Lo (@)

<
= o

o0 / M (1) p(tn) €xp(G (11n) ) T (ttn — v0) iz +
Q

+/M(Vun)p(un)exp(G(un))Tk(un—vo)+daz +
Q
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200 el () / M (un) exp(Glun))d: +

{0<un—vo<k}

+HC()||L°°(Q) / M(|VTk(un —vg)ﬂ)exp(G(un))dx—l-cl.
{0<un—vo<k}

For the third term of the left-hand side of (16), we have

/ Hy (1, V) exp(G (1) YT (11 — v9) it < ks exp <””O‘JL> / Ih(2)]dz +
Q Q

+/p(un) exp(G(un)) M (|Vun|) Tk (4, — vo) T de.
Q

For the second term of the right-hand side of (16), we obtain

[ P9 (b6l Tatun —00)) d < S e (”p”,”) . Q/ o ('F') dz +

(0}
Q

25 [ ) exp(G ) MV T () o+
Q

+2exp <”’1|L> /M ('F|> dz + &1 / exp(G(un) ) M (|Vun|)dz + cs.
Q

€1
{Ogun_vogk}
Finally, by using the above and (6) in (16), we get

1-— OéoHC(/')HLOO(Q) /M(\un\)p(un) exp(G(un)) Ty (un —vo) " dz +
Q

o leOlre af] [ o) ex(Gwn)) M (Wt it = ) +
Q

+ / (1t Vitn) exp(G (1)) ¥ (Ti (1t — v0) )l <
Q

<2acOllee [ exp(Gu)M(TVunl)do +

{0<up—vo<k}

(e | ey + 1) / exp(G(un)) M(|Vun|)der + sk + ca,

{0<up —vo<k}

where ¢4 = ¢1 + ¢9.
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If we choose o’ and ¢; such that o’ = %, g1 < % — lle(-) )| Lo () by using that Ty, (u, —vo) ™ =

=uy — v forx € {xr € Q: 0 <wu, — vy <k}, we obtain

an(Un, V) exp(G(uy))Vupde <

{0<un—vo<k}

_ ao(e1 + [[e( )l L)) / exp(G (un)) M (|un|)dz | +

B e}
{0<un—vo<k}

e+ e lme) / exp(G(un)) M (|Vn|)da | +
{OSUTL*UOSR}

+ an, (Up, V) exp(G(uy))Voodz + csk + c4.
{0<up—vo<k}
Since aga < 1, by using (6), we get

[RERCCIRTEY

(67

an(Un, Vuy) exp(G(uy))Vupdr <

{0<un —vo <k}

< an (Up, V) exp(G(un))Voodz + csk + cy.
{OSUn_UOSk}

By using (5), we get, for any a; > 0 («y is a parameter to be specified later),

o1 an (Un, V) exp(G(un))vO:de <

{0<up—vo<k}

<o an(Un, Vi) exp(G(uy))Vuyde —

{Ogun*UOSk}

_ / an(Un, V) exp(G(u,))V (un - Vavo> dx.
{0<up—vo<k} !

Then

d an(Un, Vuy) exp(G(uy))Vupdr <

{0<up—vo<k}

cor [ o)
aq

{0<up—vo<k}

exp(G(uy))|Vuy,|dx +
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< VU())
Ap | Up, —
a1
— al] such that oy < 1 —
< VUO>
Ap | Up, —
aq
1 — \%
< Bexp (!p”;/um) [M(a(:v)) + M <\un\> +C'+M <k2\avof> + 3M(|Vun|)} (18)
1

0
(o)
Qp \ Up, —
aq

< Bexp <”p”5(m) [M(a(x)) +M <|“5”> +C'+ M <k2 Va“(") +3M <|W°‘>] . (19)

1 a1

exp(G(un)) VC:iO dx. (17)

“+an

{Ogun —vo Sk}

e1+ [[e0)llze(e)
o

g1+ lle(-) |l (o)
o
Young inequality, we have

Taking ¢’ = [1 — , using (2), (4) and

exp(G (un))|Vun| <

and

exp(G(uy)) VOZO

<

. \Y : . .
Since ~2 ¢ (En(Q))Y, one pass to the integral in (18), (19), by using Lemma 1, (13) and (17),
aq
we get

d an(Un, V) exp(G(uy))Vupdr <

{0<un—vo<k}

Oé/

§405156Xp (HPHLl(Q)> / M(]Vun])dx+05k+c6.

{0<up—vo<k}

/
Taking also <y such that 4o 5 exp (”pHL:(Q)) < CEexp (—HPHL;(Q)) and using (6), we obtain
o o

M(|Vuy|)dz < crk + cs. (20)

{0<un —vo<k}
Similarly, taking w,, + exp (—G(uy,))Tk(un — vo)~ as a test function in problem (14), we get

d an(Un, Vi) exp(—G(uy))Vupdr <

{—k<un—v9<0}

/

o

< exp(=G(un)) M([Vun|)dz + cok + c10 @2n

|

{—k<un—v9<0}

and
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/ exp(— G )) M (|Vun| )z < c11k + c1o.
{—k<un—vo<0}
Combining now (20) and (21), we deduce (15).
Since {x € Q; |u,| <k} C {z € Q;|uy, —vo| < k+ |vo|oo}, We obtain

/M(|VTk(un)|)dx = / M(|VT(up)|)dx <
Q {lun|<k}

< / M (VT (un))dz < kCy + Co.

{lun—vo[<k+|volloc}

We conclude that {T}(uy)}, is bounded in Wi L/ (€2) independently of n and for any k > 0, so

there exists a subsequence still denoted by wu,, such that
Ti(uy) — & weakly in =~ W)Ly ().

On the other hand, by using Lemma 1, we have

M (S) meas{|uy,| > k} < / M Tk?"”) dx <
{lun|>k}

< /M(\VTk(un)])dac < kCy + Cs.
Q

Then
kCs + Cy

v (5)

lim meas {|u,| > k} = 0.
k—o0

meas {|u,| > k} < forall » and k.

Thus, we get

(22)

Step 3: Now we turn to prove the almost every convergence of {u, },, and the convergence of

an(Tk(un), VI (un)).
Proposition 2. Let u,, be a solution of the approximate problem (14), then

Uy —>u ae in €,

an(Ti(un), VT (un)) = @ in (L)Y for o(IlLz7,IIEN),

for some wy, € (Ly7(Q))V.
Proof. Proof of (23). Let n > 0, € > 0 and k£ > 0, then

meas{|u, — | > n} < meas{|u,| > k} + meas{|u,,| > k}+

+meas{ |1y (un) — Tk(um)| > n},

(23)

24
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by (22), we can assume that (Tj(u,)), is a Cauchy sequence in measure in ). Thus, there exists
k() > 0 such that meas{|Tx (un) — Tk (um)| > n} < € for all n,m > ny. Hence, {uy}, is a Cauchy
sequence in measure in {2 and then converges almost everywhere to some measurable function .
Proof of (24). We shall prove that {a(Ty(uy), VT (un))}n is bounded in (LM(Q))N for all
kE>0.
Let w € (Ep(Q2))Y be arbitrary. By (5) we have

(a(tn, Vuy) — a(up, w))(Vu, —w) > 0.
Then
a(tp, Vuy)wdr < / a(tp, Vuy)Vupdr + / a(tp, w)(w — Vuy,)dz.
{lun|<k} {lun|<k} {lun|<k}
By using (4), the convexity of M and the definition of T},, we get
w

7 (wk> do< /[M(ao(a:))+P(k1\Tk(un)|)+M(\w|) d <
Q

{lun|<k}

< fy/ [M(ao(a:)) + P(klk)daz+M(|w1)}dm for v > p.
Q
Thus, {a <Tk(un), Z}) } is bounded in (L37(€2))Y. By (15), (21) and by Banach - Steinhaus the-
2/ Jn

orem, the sequence {a(T(uy), VI (uy))}n, remains bounded in (L37(€2))" and we conclude (24).
Step 4: Almost everywhere convergence of the gradients. To have that the gradient converges
almost everywhere, we need to prove this proposition.
Proposition 3. Let {u,}, be a solution of the approximate problem (14), then

lim limsup / a(tp, Vuy)Vupdr =0 (25)

M= n—oo
{m<|un|<m+1}

and, for a subsequence as n — oo,
Vu, = Vu ae in §.

Proof. Choosing, in the equation (14), the test function Z,,(u,) = up +exp(—G(up))m(un)
where ¥y, (up) = Th (up, — T (uy)), we get

/ an (Up, V)V (exp(—G(up))m (uy) ™~ )dz +
Q

T / B (1) Y (€xD(— G (11) o (1)) +
Q
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—i—/Hn(un,Vun) exp(—G(un))m (up) " dz >
Q

> [ fuexpl=Glun)mlun) do+ [ FV(exp(-Glun))vm(uwn) e 20
Q Q
In the second term of the left-hand side of (26), we use (3), (7) and Young inequality to get

/ B (1) V (XD~ G (ttn) o (1) )l <

Q

< W= [ vt ) oG ) +

o
Q

A0l [ M 0]y exp(~Gua) o) +

(07
Q

+aolle()ll () / M (Jttn]) exp(—G(uun) ) +

{=(m+1)<un<-m}

HleO)l =y / MV (1)) €D~ G (11n) ).
Q

For the second term of the right-hand side of (26), we have

oo ()i < 1] Il P g o) de
[ F -G un)m(un) i < 1L e ( L>Q/ ( >¢ Vdi 1+

(67
Q

20 plun) exp(—G ) M (] (10n) i +

Q

F
—i—exp(‘iﬂ#) / M(Ll|>d +

{=(m+1)<un<-m}

Ty / exp(= G (14n)) M (Vb (1) | ).

Q

By using the same argument is step 2, we obtain
[, TV (1) i <
Q
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ol
< exp < > fnZm(up)dx + | h(x)Zpy(up)dx | +
/ !
ol ol 1 |F] 7 ( 1F]
Q Q

oo ()
where 1 = [1 — le()lle @) 61} exp (— ”pHL1> .

C Q o
Passing to limit as n — +00, since the pointwise convergence of w, and strongly convergence

in LY(Q) of f,, we get

lim /an(umVun)V(i/)m(un)_)dx <

n—-+o00
Q

< exp (Hp’“) /fZ dx+/h( ) Zom (u)d +
Lol Q/ B (Z‘) Zntas+ [ W (’g’) d

{~(m+1)<u<—m}

By using Lebesgue’s theorem and passing to limit as m — +oo, in the all term of the right-hand
side, we get

lim lim / an (Un, Vi) Vupdr = 0.
m—+00 n—>+00
{=(m+1)<up<—m}

In the same way, we take Z,,(u,) = up, — exp (G(up))m(u,)t and choosing in approximation
equation (14), the test function Z,,(u,,), we also obtain

lim lim / an (U, Vi)V, = 0.

m——+00 Nn—r—+00
{m<up<m+1}

On the above we get (25).
For the almost everywhere convergence of the gradient (see Appendix).
Step 5: Compactness of the nonlinearities. We shall prove that H,(u,, Vu,) — H(u, Vu)
strongly in L1(€2).
Un

Let y be the characteristic function and consider go(uy,) = / p(8)X{s>n}ds. Choosing u, +
0
+ exp(G(uy))go(uy,) in the equation (14), we get, after using the same technique in step 2,

/ an(tn, Vun)p(un)X{un>h}vund$ <
{un>h}
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+o0
ollLem)y [~ (F
<c| [ oo | (Il + Il + 5 (37 (L) dr| +
h Q
ol 21 (m) __(F
+ exp (o/) ”PHLl(JR) / M <€1> dx,
{un>h}
() T
where l = 11— (@)l @) 61} exp <—2Hp”Ll> .
C Q@ o
Since p € L'(IR) and by (6), we get
lim sup p(un) M (Vuy)dz = 0.
TL%OOTLGW
{un>h}

0
Similarly, let go(u,) = / p(8)X{s<—nydr and choosing in (14) the test function wu, +

+exp(—G(un))go(un), we have also

lim sup p(un) M (Vuy)dz = 0.
n—oo nelN
{un<—h}
We conclude that
lim sup p(un) M (Vuy)dx = 0.
n—oo nelN
{lun|>h}

Let D C €, then

D/p(un)M(Vun)dm < {|$?§Xh}(p(x)) / M (Vuy)dzx +

D{|un|<h}

+ / p(un) M (Vuy)dz.
Dn{|un|>h}

Consequently, p(un)M(Vuy,) is equiintegrable. Then p(u,)M (Vu,) converges to p(u)M(Vu)
strongly in L' (IR). Hence, by (8), we get our result.

Step 6: We show that u satisfies (11). Let v € K. N L*°(2), then by Lemma 4 there exists
v; € D(Q) such that v; — vin for the modular convergence in Wy Lys(€), with [|vjl1ec(0) <
< (N + 1)[[v]| poe () and we can take v; € K.

By choosing, in the approximate equation (14), the test function T (u, — v;), we get

/an(una V) VT (u, — Uj)dx + /(I)n(un)VTk(un - Uj)d$ +
Q Q

+/Hn(un, V)T (un — vj)de = /fnTk(un —vj)dx — /FVTk(un —vj)dx. (27)
Q Q Q
We pass to the limit in (27), as n — +o0o0 and j — 4o00:

ISSN 1027-3190. Yxp. mam. ocypn., 2021, m. 73, Ne 12



NONLINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES 1601

We can follow same way as in [7] to prove that

lim inf liminf/a(un, V) VT (u, —vj)dr > /a(u, Vu)VTi(u — v)dz.

j—00 n—o0
Q Q

For n > K, where K =k + (N + 1)||v[| (), We have
D, (Un) VT (un — vj) = P(Tk(un))VTE(un — vj).

The pointwise convergence of u, to v as n — +oo and (12), gives ®(Tk (un))V T (up — v;) =
— &(Tx(u)) VT (u — v;) weakly for o(IILys, IILy;). In a similar way, we obtain

lim | ®(Tk(u))VTi(u —v;)d /(I' u))VT(u—v)de =
j—00
Q Q

_ /(IJ(u)VTk(u — v)da.

Q

Limit of Hy,(un, V)T (u, — vj): Since Hp(uy, Vuy,) converges strongly to H(u, Vu) in
L'(Q)) and the pointwise convergence of u, to u as m — -oo, it is possible to prove that
Hy,(tn, Vg Ty (un, — v;) converges to H (u, Vu)Ty(u — v;) in L}(Q) and

lim [ H(u, Vu)T(u — v;)de = /H u, Vu)Tj(u — v)dx.
j—o0
Q

Since f,, converges strongly to f in L'(2) and Ty (uy, — v;) — Tk(u — vj) *-weakly in L>(Q),
we have /fnTk(un —vj)dr — /ka(u — vj)dx as n — oo and also /ka(u — vj)dx —
Q Q Q
fTi(u —v)dx as j — oo, then it easy to get
lim lim [ FVT,(u, —vj)de = /FVTk(u—v)da:.

J—+00 N—>00
Q Q

Theorem 1 is proved.

Example2. As an examples of equations to which the present result entropy solutions can be
applied, we give

1 p
1) for M(t) = ~|u?, a(z,u, Vu) = |Vu[P~2Vu, ®(z,u) = c(x)|a0u]§, c(-) € L*>*(Q) and
p
F e (B@)",

—div(|VulP2Vu) — div(®(z,u)) = f — div(F) in Q,
u=0 on 0%
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log(1 + |Vul|)

2) for M(t) = tlog(1+t) and a(x,u, Vu) = (14 |u[>)Vu Vi

F=0,

, ¢(-) € L*>(Q) and

—div(a(z, u, Vu)) — div <c(:v) exp < >M_1M(a0]u\)> =f in Q,

_n
|zl +1
u=0 on Of.

Appendix. First call the following lemma.
Lemma 6 [6]. Under assumptions (4)—(9), and let (z,) be a sequence in W3 Ly (Q) such that

zp =z for o(IILyr, I1Eg;),

{a(zn,Vzn)}n is bounded in (L37(Q))Y,

/[a(zn, V) — a(zn, Vaxs)|[Van — Vazxs|de — 0
Q

as n and s tend to +0o, and where X is the characteristic function of Qs = {x € Q;|Vz| < s}.
Then

Vzp, > Vz ae in $,

lim /a(zn,Vzn)Vznd:c: /a(z,Vz)Vzd:c,

n—-+o00
Q Q

M(|Vz,|) = M(|Vz|) in LY(Q).

Now, we show that Vu,, — Vu a.e. in (), where u,, is the solution of the approximate prob-
lem (14).
Indeed, we introduce a sequence of increasing C!(IR)-functions S,,, such that, for any m > 1,

Sm(r)=1 for |r| <m,
Sm(r)=m+1—|r| for m<|r|<m-+1,
Sm(r)=0 for |r|>m-+1,
and we denote by (n,n, j, m) the quantities (possibly different) such that

lim lim lim lim lim e(n,n,j,m)=0.
m—+00 j—+00 N—>+00 p—>+00 n——+00

Let v; € D(Q) be a sequence such that v; — w in WLy (€2) for the modular convergence. For
fixed k > 0, let Wy? = T, (Ty.(un) — Ti(v;))" and Wi = T, (Th(u) — Ti(vy))*.

Choosing in the approximating equation the test function exp(G(uy,)) Wy Sy, (uy,) and using (6)
and (8), we obtain
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/ (11, Vi) exp(G (1)) (W9 Sy ()t +
Q

—l—/an(un,Vun)Vun exp(G(un))ng’jS;n(un)dx -
Q

[ i) DG T W) S (1) i~
Q

—/@n(un)Vun exp(G(un))Wg’jS;n(un)d:r <
Q

< /fnexp(G(un))W#’jSm(un)dw+/h(a:) eXp(G(un))W#’jSm(un)da:+
Q Q

—|—/Fexp(G(un))V(W;’j)Sm(un)d$—|—/FVunexp(G(un))W#’jS;Z(un)dm.
Q Q

Now we pass to the limit in (28) for k real number fixed.

In order to perform this task we prove below the following results for any fixed £ > 0:

/ B (1) S (1) exp(G 1))V (W) dr = £(n, ) for any m > 1,
Q

/ D (1) Vit Sl () exp(Gun) )W d = £(n, ) forany m > 1,
Q

/an(un, V) Vun S, (un) exp(G(un))Wff’j dx < e(n,m),
Q

/an(un, V) Sm (un) exp(G(un))V(WT’;’j) dr < Cn+¢e(n,j,m),
Q

/fnSm(un) eXp(G(un))WT;l’j dx + / h(x) eXp(G(un))Wg’jSm(un) dz < Cn+e(n,n),
Q Q

/ F exp(G(un))V (W) S (1) i + / FV ity exp(G ()W 1 ()i <
Q Q

S 5(71, m7j777))
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/ [a(T (1), V() — a(Ti (), VIi(0)] [VTi(u) — VIi(w)]de 0. (35)
Q

Proof of (29). If we take n > m + 1, we get

P (un) exp(G(un))Sm(tn) = @(Trm+1(un)) exp(G(Tmt1(un)))Sm(Tmt1(un))-

Then ®,,(uy,) exp(G(uy))Sm(uy,) is bounded in L7;(Q), thus, by using the pointwise convergence
of u,, and Lebesgue’s theorem, we obtain

D, (uy) exp(G(un))Sm(un) = ®(u) exp(G(u))Sy(u) as n — +oo

with the modular convergence.

Then @, (uy) exp(G(un))Sm(un) = ®(u) exp(G(u))Sy, (u) for o(IlLy;, I Lyy).

In the other hand, VIW,"/ = VT (u,) — V(Tx(vj)), for |Ty(un) — (Tk(v;)| < n, converges to
VT (u) — V(T (v;)) weakly in (Lp(€2))", then

/@n(un) exp(G(un))Sm(un)VW;”J dx — /Cb(u)Sm(u) exp(G(u))VWg dx
Q Q

as n — +00.
By using the modular convergence of Wg as j — +oo and letting p tends to infinity, we get (29).
Proof of (30). For n > m + 1 > k, we have Vu,S,, (uy) = VT41(uy,) ae. in Q. By the
almost every where convergence of u,, we have exp(G(uy))Wy' I exp(G(u))Wg in L>(Q)
weak-* and since the sequence (®,,(T+1(un))), converges strongly in E7(€2), then

(I)n(Terl(un)) eXp(G(un)) Wél’j - (b(Terl(u)) eXP(G(U))W#

converges strongly in E5;(€2) as n — +oo. By virtue of VT, 1(un) — VTi41(u) weakly in
(L ()N, we have

/ D (Tt (un)) Vg Sy, (un) exp(G(un))W#’j dr —

{m<|un|<m+1}
— / O (u)Vu exp(G(u))Wg dr as n — +oo.
{m<|ul<m-+1}

With the modular convergence of Wrg as j — +oo and letting © — +o00, we get (30).
Proof of (31). For (31), we have

/an(un, Vu,)Vuy, exp(G(un))W,’;’jS;n(un) dx =
Q

= / an (Un, Vi) Vg, exp(G(un))W,;"jS;I(un) dx <

{m<|un|<m+1}
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<nC / an(Un, Vi) Vuy, d.
{m<jun|<m+1}
By using (25), we get
/an(un, Vuyn)Vuy, exp(G(un))Wg’jS,'n(un) dx < e(n,m).
Q

Proof of (33). Since S,,(r) <1 and W,?’j <n, we get

/fnSm(un) exp(G(un))W;’jdx <e(n,n)
Q

and
/ () exp(G (tn)) W Sy () < O,
Q
Proof of (34). We obtain

/Fexp(G(un))V(W#’j)Sm(un) dz + /FVun exp(G(un))Wﬁ’jSJn(un)daj = Kr1 + Kpo.
Q Q

For the first integral, we have

Kpy1 <exp (HPHZ(]R)> /FVW,7’jdx < e(n).
0

Since T (uy,) and Tk (v;) converges weakly in Wi Ly (), we deduce
Kry <e(n,j,m).

For the second integral, we know that Vu,,S], (u,) = VT,,+1(uy) and using (6), we get

IN

€1

Kpo <exp <H'0HOL;UR)> €1 /M <> Wyldz +en / ap (Up, Vg ) Vu,dz
Q

m<|uyn|<m+1
< 6(’/1, m, J, 77)'

Proof of (32). We obtain

/an(un, V) S (tn) exp(G(un))VW%l’j dr =
Q

_ / Ty (), VT (1)) S (t1) €xp(G (1))

{lun| SE}N{0< Ty (un) =Tk (vj)<n}
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X (VT (un) — VI (v5)) de —
— an (tn, Vun)VTi(vj) exp(G(un))Sm(un) dz. (36)
{Jun|>k}N{0< Ty (un)—Tx (v;)<n}

Since an(Tg-ty(tn), VTiiry(uy)) is bounded in (L77(€2))%, there exist some wgiy € (Lyp(2))Y
such that a, (Tjry(tn), VIiiy(tn)) — @k, weakly in (Ly7(£2))V. Consequently,

an (Un, Vun)VTE(v;) exp(G(up))Sm(u,) de =

{lun|>E}N{0< T (un) Ty (v;)<n}
= Whetn- VT (0j) S (u) exp(G(u)) dz + (n), (37)
{lul>EYN{0< Ty (u) =Tk (vj)<n}

where we have used the fact that
S (tn) exp(G (un)) VT (V)X {Jup |5k} {0<Tx (un)~Tho(v;)<n} —
— S (w) exp(G () VT (V) X {ju|> Kk} {0<Ty (w) T (v;) <}

strongly in (Ey(Q))N.
Letting j — -+o00, we obtain

Sin () exp(G(w)) By VT (v) di =

{|u|>E}IN{0<T} (u) =T (vj)<n}
_ / S (1) exp(C (1) )1 VT (1) dee + (n, )-
(ul> K} (O<T (u) T ()<}

One easily has,

Sm(u) exp(G(u)) @iy VT (u) de = e(n, j, p).

{lu|>E}{0<T} (u) = Tie (u) <n}

By (28)-(33), (36) and (37), we have

S () exp(G(up))an (T (tn), VI (uy)) X

{lun|<EI{O0<Tk (un) =Tk (v;)<n}
X (VT (un) — VI (v5)) de <
< Cn+e(n,j, p,m).
We know that exp(G(uy)) > 1 and Sy, (uy,) = 1 for |u,| < k, then
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(2, Ty (un ), VT (un)) (VI (un) = VT (v5)) dx <
{lun| <k}N{O<Tk (un) =Tk (v;)<n}
SCU+5(”,j,Mam)- (38)

Proof of (35). Setting for s > 0, Q° = {z € Q: VT (u)| < s} and Q] = {z € Q:
|VTk(vj)| < s} and denoting by x* and x; the characteristic functions of 2° and 23, respectively,
we deduce that letting 0 < § < 1, define

On i = (a(Tk(un), VI (un)) — a(Ti(un), VI () (VI (un) — VT (u)).
For s > 0, we have
0< / O, dz = / O, K X{O< T} (1) ~T (vy) <} 4 + / O, K X{Th(n)~Th (v;) >} 4T
Qs Qs Qs
The first term of the right-hand side with the Holder inequality

0 1-0

/ O K X{O<T, (1 )~T (v;) <y 4T < / O kX {0< T (un) T (v;)<n} AT / dx <
Qs Qs

d

<Cy /@n,kX{OSTk(un)—Tk(Uj)Sn} dx
Qs

Also, by using the Holder inequality and second term of the right-hand side, we have

/ O, X (T ()~ Ti ()5} 4% < / On.i dx / da
Qs Qs {Tk (Un)_Tk (Uj)>77}

Since {a(T)(un), VIi(un))}n is bounded in (Ly7(Q))"N, while {VT(un)}, is bounded in
(Las(2))™, then

/@fz,kX{Tk(un)Tk(vj)>n} dx < Cp (meas{z € Q: Thy(up) — Ti(vy) > n})'°.
Qs

‘We obtain
é

/ O pdr < C / On kX {0<Ty (un)~Ti (vj)<n} 42 |+
Qs Qs

+ Cy (meas{z € Q: Th(un) — Ti(v;) > n})' .

On the other hand,
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/@n,kX{O<Tk,(un)—Tk(Uj)<77} dz <
Qs

< / (T (), VT (1)) — a(Ti(ttn), VT () X)) X

{0< Ty (u) =Ty (vs)<n}

X (VT (un) — VT (u)xs) dz.

For each s > r, r > 0, one has
0< (a(Ti(un), VT (un)) — a(Ty(un), VTi(u))) %
Q"N{0<T% (un)—Tx(v;)<n}
X (VT (upn) — VI (u)) dz <
< / (@(Te(tn), VT (tn)) — (T (), VTx(1))) %
Q{0 T (un) ~ T (v7) <11}
X (VTi(un) — VI (u)) dx =
- / (@(Tk (), VT(n)) — alTh(tn), V() xs)) X
Qsm{OSTk(U'n)_Tk(Uj)Sn}
X (VT (up) — VI (u)xs) de <
< (a(Th(un), VTi(un)) — a(Tr(un), VI (u)x?)) x
Q{0 T, (un )~ Ty ()<}
X (VT (up) — VT (u)x®) de =
- / (@(T(1tn), VT () — (T (1), VTi(07)x) %
{0< Tk (un) =Tk (vj)<n}
X (VT (un) — VTi(vj)x;) dr +

+ / a(Tg(uy,), VTk(un))(VTk(Uj)Xj — VTi(u)x®) dz +

{0< T (un) =T (v5)<n}

+ / (@(Ti(un), VTi(05)x3) = a(Th(un), VT (u)x*)) Vi (un) dz —

{0< T (un) =Tk (vj)<n}
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- / (T (1), VT (07X VT (07 dee +
{0<Tk (un)—Tr(vj)<n}

[ i), V@) VT de -
{0<Tk (un) =Tk (v;)<n}
= Il(nvjv S) + I2(na]) + -[3(”7]) + I4(naj) + 15(’”’)
We will go to the limit as n, j, 4 and s — 400:

I = / (T (tn), VT(tn)) (VT () — VT (v;)) dir —

{0<T (un) =T (v)<n}

- / (T (tn), VT (1)) (V T (03X — V(7)) d —

{0< T (un) =T (vj)<n}

= [ A V@) (VT ) — VT()xG) de.
{0< T (un) =Tk (vj)<n}
Using (38) and the first term of the right-hand side, we get

a(Ti(un), VI (un)) (VI (un) — VT (vj)) de <

{OSTk (Un)_Tk (Uj)éﬂ}

<Cn+e(n,m,j,s) — a(Ty(u),0)VTi(v;) dx <
{lul>F3N{0<T (w) — Tk (v;) <n}
< Cn+e(n,m, j, p).
The second term of the right-hand side tends to
wi (VT (vj)xj — VT (vy)) de.
{0<Tk (u) =Tk (v;)<n}

Since {a(Ty(un), VIk(un))}n is bounded in (L77(2))Y, there exists @y € (L37(€2))" such that
(for a subsequence still denoted by uy,)

a(Ti(un), VT (un)) = @y in (Ly ()N for  o(IlLyz, TEy).
In view of the fact that
(VT (vi)X; — VT5(05)) X {0< Ty (wn) - To (v)<n} —
= (VT (vj)x; — VTk(v5))X{0< T, (w) - Ti (v;)<n}
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strongly in (Ej(€Q))Y as n — +oo. The third term of the right-hand side tends to
a(Ty(u), VT (vj)x;) (VT (w) — VTi(v;)x;) dz.
{0<T}, (u)—T (v;)<n}
Since
a(T(un ), VT (V) X5 )X {0< Tk (un)~Ti (v;)<ny — (L), VI(05)X5) X {0<T3(w) T (v;) <n}

in (Eyp(Q)N while (VTi(un) — VTi(vj)x5) — (VT(u) — VTi(v;)x5) in (La(92))N for
o(I1Lar, I1E5;). Passing to limit as j — +oo and pu — 400 and using Lebesgue’s theorem, we
have

IQ = €(n>j)'
Similar ways as above give
I3 = €(n7j)7
L= [ alTw), V@) VTk(w) d o+ e m),
{0< T (u) =Tk (v;)<n}
Is = / a(Ty(u), VI (u))VTi(u) dx + e(n, j, 1, s,m).

{0<Ty (u) =Ty (vy)<n}

Finally, we obtain

/@n,k dx dt < Cy (Cnp+ e(n, p1,m,m))° + Ca(e(n)) 2,
Qs

which yields, by passing to the limit supremum over n, j, i, s and 7,

{T (T (un) =T (v5)) 20}NQ"

0
Mvn@@—vnww<mzdm. (39)
On the other hand, taking the functions W,?’j = T5)(Tx(upn) — Tr(v))~ and Wg =T (Ti(u) —

— Tk (v;))~. Choosing in the approximate equation the test function exp(G(up))Wy"™ S (uy,), we
obtain

[(G(Tk(un), VT (un)) = a(Ty(un), VTi(u))) X

{T (T (un) =Tk (v;))<OFNQ"

Mvnm@—vnmwﬂm:dm. (40)
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By (39) and (40), we get

/ [(a(Tk(un), VTi(up)) — a(Tk(up), VI(w)))(VTk(uy) — VT (u)) ’ dx = e(n).
QT

Thus, passing to a subsequence if necessary, Vu,, — Vu a.e. in 2", and since r is arbitrary,

Vu,, — Vu ae.in .
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