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EXISTENCE OF POSITIVE SOLUTIONS FOR A COUPLED SYSTEM
OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

ITPO ICHYBAHHSA JOJATHUX PO3B’A3KIB 3B’ I3AHUX CUCTEM
HEJIHIMHUX JIPOGOBO-IU®EPEHIIAJIBHAX PIBHSHb

We study the following nonlinear boundary-value problems for fractional differential equations
Du(t) = f(t,0(t), D" u(®), >0,
DPu(t) = g(t,u(t), D u(t)), t>0,
u>0 and v>0 in (0,00),

li t)=1i t) =0,
J, u(0) = Jig, v(0)

where 1 < a <2 and 1 < 8 < 2. Under certain conditions on f and g, the existence of positive solutions is obtained by

applying the Schauder fixed-point theorem.
BuBuaroThcs HemiHilMHI TPaHWYHI 3a71a4i Ui JpoOoBo-AudepeHIliaIbHUX PIBHSIHB
D%u(t) = f(t,v(t), D’ u(t)), >0,
DPu(t) = g(t,u(t), D* tu(t)), t>0,
u>0 1 v>0 B (0,00),

li t)=1i t) =0,
J, u(0) = Jig, v(0)

el <a<2rTal< B <2 3ajgedkux yMOB, HaKJIaJeHUX Ha f 1 g, ICHyBaHHS JOJAaTHUX PO3B’SA3KiB BCTAHOBIIOETHCS
pi( = = y s I 9, Yy it p

3a gornomoroio Teopemu llaynepa mpo HepyXoMy TOUKY.

1. Introduction. Fractional differential equations are gaining much importance and attention since

they can be applied in various fields of science and engineering. Many phenomena in viscoelasticity,

electrochemistry, control, porous media, electromagnetic, etc., can be modeled by fractional diffe-

rential equations. They also serve as an excellent tool for the description of hereditary properties

of various materials and processes. We refer the reader to [8, 11, 12, 20] and references therein for

details.

Recently, many authors have investigated sufficient conditions for the existence of solutions for

the following coupled systems of nonlinear fractional differential equations with different boundary

conditions on finite domain
D%u(t) = f(t,v(t)),
D(t) = g(t,ult)),
and more generally,

Du(t) = f(t,v(t), D v(t)),
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DPu(t) = g(t, u(t), D u(t)),

where D¢ is the standard Riemann-— Liouville deravitive of order «, see, for example, [2, 4, 6, 9,
10, 16-19]. However, to the best of our knowledge few papers consider the existence of solutions
of fractional differential equations on the half-line. Maagli in [13], studied the existence of solutions
for differential equations involving the Riemann-Liouville fractional derivative on the half-line
RT := (0,00)

D%u(t) = f(t,u(t)) in (0,00),
u>0 in (0,00),

li =
lim u(t) =0,

where 1 < a <2 and f is a Borel measurable function in (0, c0) x (0, 00).
Maagli and Dhifli [14] considered the following boundary-value problem for fractional differen-
tial equations:

Du(t) = f(t,u(t),D* 'u(t)) in (0,00),
u>0 in (0,00),

}g% u(t) =0,

where 1 < a < 2 and f is a Borel measurable function in (0, c0) x (0, 00) x (0, 00) satisfying some
appropriate conditions.

Our aim in this paper is to extend the above results to the coupled system of nonlinear fractional
differential equations on an unbounded domain

Du(t) + f(t, v(t), Dﬁ_lv(t)) =0, t>0,

DPu(t) + g(t,u(t), D*tu(t)) =0, t>0,
(1.1)

u>0 and v>0 in (0,00),

li t) = li t) =0,
A0 = S

where 1 < a<2,1< <2, fand g are Borel measurable functions in R™ x R x R* satisfying
the following assumptions:

(Hy) f and g are continuous with respect to the second and third variable.

(H) There exist nonnegative measurable functions hi, hs, k1, and k3 on RT x RT x R™ such
that

(i) forall z, y, z € RT we have

[f(z,y,2)| < h(z,y,2),

lg(z,y,2)| < k(x,y,2),

where h(.’E,y, Z) = yhl(l‘7y’ Z) + th(ﬂ?,y,Z) and k(az,y,z) = ykl(xayuz) + Zkz(ﬂ?,y,Z);

ISSN 1027-3190.  Vkp. mam. ocypn., 2019, m. 71, Ne 1



EXISTENCE OF POSITIVE SOLUTIONS FOR A COUPLED SYSTEM ... 39

(it) for j = 1,2, the functions h; and k; are nondecreasing with respect to the second and the
third variables and satisfying for all x € R™
li h; , lim  k; , 0 fi =1,2;
(v Z)IE%OO) (2:9:7) = (yz)1—>(00 (:9,%) = o
tV

(iii) the integrals / h(t,ws(t),1)dt and / (t,wq(t),1)dt converge, where w, = m
14

forl <v <2
Our main result is the following.
Theorem 1.1. Assume (Hy) and (H»). Then problem (1.1) has infinitely many solutions. More
precisely, there exists a number b > 0 such that for each ¢ € (0, b], problem (1.1) has a continuous
solution (u,v) satisfying
o
u(t) = cwq(t) —I—/ (1 — <
0
o0
U(t) = ch(t) +/ (1 — <
0

and

where, for every x € R, 7 = max(z,0).

This paper is organized as follows. In Section 2, some facts and results about fractional calculus
are given. We prove the main result in Section 3. Finally, we conclude this paper by considering an
example in Section 4.

2. Preliminaries. In this section, we introduce some necessary definitions and results which
will used throughout this paper.

Definition 2.1. The Riemann— Liouville fractional integral of order 8 > 0 of any function u:

R* — R is defined by
t
1
F/ dS

provided the right-hand side is point-wise defined on R .
Definition 2.2. The Riemann— Liouville fractional derivative of order 6 > 0 of a continuous
Sfunction u: (0,00) — R is given by

D%(t):r( ( )/tt_senﬂds
0

where T' is the Gamma function and n = [0] + 1, provided that the right-hand side is point-wise
defined.
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Remark 2.1. The following properties are well known (see [12, 15]):
(i) D°I%u(t) = u(t), ae. in RT, >0, u € L{ ([0, 00)).
(i) I°1%(t) = I9TOu(t), ae. in RT, 0+ > 1, u € L{ ([0, 00)).
(iii) Let 0 > 0, then D’u(t) = 0 if and only if u(t) = Y~ ¢;t"~J, where n = —[~0] the
]:
smallest integer greater than or equal to 6 and (cq,...,c¢,) € R™.
(iv) Let 1 < 0 <2, and ¢t > 0, then we have
ot -1
" (D)) = t) = ——.
(1)) =) = 555
In the sequel, we denote by C([0,0c]) the set of continuous functions u on R such that
lim;_,o+ u(t) and ltlim u(t) exist. It is easy to see that C'([0,00]) is a Banach space with the norm
—00

|ul|co = supy>g |u(t)]. For 1 < 6 < 2, we define
Ey = {u e 0([0,00]) : D~ wpu) € C([0, oo})} 2.1)
endowed with the norm ||u||g = || D?~!(wyu)||so. Then, it’s easy to see that the map
(Eo, 1l-lle) — (C([0,00]), [l-llss)
w—s Dy (u)

is an isometry. It follows that (Fjy, ||.||g) is a Banach space.
Let £ = E, x Eg endowed with the norm

1w, v)l| = max ([[ufla, [ulls),

then (E, ||.||) is a Banach space.

Next, we quote some results in the following lemmas that will be used later.

Lemma 2.1 (see [7]). Let 1 < 0 < 2 and let f be a function in C([0,00)) such that f(0) =0
and D71 f belongs to C([0,0)). Then, for t > 0, we have

I°71DO7Nf(t) = £(t).
Lemma 2.2 (see [14]). Let mi,m2 € R and u € C([0,00)) such that D~ (wyu) € C([0,00))
and m; < De_l(wgu)(t) < mg forall t > 0. Then, for each t > 0,
m1 < u(t) < mao.

In particular, |ul|oo < ||D*H(wou)||oo and Eg C C([0, 00)).
Let 7, = {u € E,: 0 < D" !(w,u) <1} . Then we have the following result.
Lemma 2.3 (Assume (Hy)). Then the family of functions

t

/ (1 - ;)a_l f (s,wg(s)v(s),Do‘_l(wgv)(s))ds, v e Fp
0

and
t

/ (1 — ;)571 g (s,wa(s)u(s), Dﬂ_l(wau)(s)>ds, u € Fy
0

are relatively compact in C([0, o0]).
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Proof. The proof is very similar to and based on the technique used in the proofs of [13]
(Lemma 1.5); hence we omit it.

3. Proof of Theorem 1.1. Let BC([0,00)) be the Banach space of all bounded continuous
real-valued functions on [0, c0), endowed with the sup-norm ||.||~. In order to prove Theorem 1.1,
we need the following compactness criterion for a subset of BC([0, c0)), which is a consequence of
the well-known Arzela— Ascoli theorem. This compactness criterion is an adaptation of a lemma due
to Avramescu [3]. In order to formulate this criterion, we note that a set U of real-valued functions
defined on [0, c0) is said to be equiconvergent at oo if all the functions in U are convergent in R at
the point co and, in addition, for each € > 0, there exists 7' = T'(¢) > 0 such that, for any function
1 € U, we have |(t) — limgs_oo ¢(s)| < € for t > T.

Theorem 3.1 (see [3]). Let U be an equicontinuous and uniformly bounded subset of the Banach
space BC([0,00)). If U is equiconvergent at oo, it is also relatively compact.

In the sequel, for z,y, z € RT, we denote

F(z,y,2) = wg(z)hi(z,y, 2) + ha(z,y, 2) and G(x,y,2) = wa(x)k1(2,y, 2) + ka(x, 9, 2).

It follows from (H;) and Lebesgue’s theorem that

o0 [e.o]

ll_I)I(l) F(t,swg(t),s)dt =0 and ;1_% G(t, swq(t), s)dt = 0.
0 0

Hence, we can fix a number 0 < A < 1 such that

max / F(t, hws(t), V) dt, / Gt Moa(t), N dt | < é
0 0

2
Let b = 3 and ¢ € (0,b]. To apply a fixed point argument, set
A=A, x Ag,

where

< D Hwqu) < 326} and Ag = {v € Eg:

3
Aa:{ueEa: SDB_I(wgv)S;}-

N o
[\l e}

Then A is a nonempty closed bounded and convex set in . Now, we define the operator T on A by
T(u,v) := (A1v, Asu),

where, for a given ¢ > 0,

o)

Au(t) = c—l—/ (1 - ((1 - j)Jr) a_1>f (s,wg(s)v(s),Da_l(wgv)(s)) ds, v € Ag,

0

and
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Agu(t) = c+ / (1 - <<1 - i>+>ﬁ_1) f(s,wa(s)u(s), Dﬁ_l(wau)(s)) ds, wuel,.
0

First, we shall prove that the operator T maps A into itself. Let v € Ag. Using Lemma 2.3, we
deduce that the function A;v is in C([0, c0]). On the other hand, for ¢ > 0, we obtain

wa(t)A1v = wa(t) | ¢+ /f (s,ws(s)v(s), Da_l(Wﬁv)(s)) ds | — I*(f(.,wv, D* 1 (wsv)))(t).
Hence, applying D=1 on both sides of this equality, we conclude that, for each ¢t > 0,
D Hwa Aw)(t) = ¢+ / f (s,wg(s ),Do‘_l(wgv)(s)) ds. (3.1)
t

This implies that D* ! (w,Ajv) is in C([0,00]) and A1A, C E,. Furthermore, for v € Az and
t > 0, we have

|D* N (waA1v)(t) — ¢ < / | (5, wa(s)v(s), D*Hwav)(s)]) ds <

/h s,wg(s)v(s), D* H(wgv)(s)) ds <
0

s/h<s,3cwa<s>,3c> ds =
2 2
0
3¢ T 3¢ 3c
_ ¢ 2¢ 2 <
5 /F(s, 2w5(s), 2>d.5'_
0

Cc

\]

< ?;C/F(s,)\wg(s),)\) ds <
0

It follows that for each ¢ > 0

¢ < DN wadio)(t) < %

So, since from Lemma 2.3 A;A, C C([0, o0]), we conclude that A, is invariant under A;. Similarly
we prove that Ag is invariant under A, and hence A is invariant under 7.
Next, we prove that T'A is relatively compact in (E, || - ||). For any v € Ag and ¢ > 0, we have

%Dafl(wa/llv)(t) —f(z, wa(t)v(t), DP~ Ywpv)(t)) ae. in RY.

Since
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| F(t,ws(t)v(t), D wpv)(1)] < h(t,wa(t)o(t), DP~Hwsv)(t)) < h(t,ws(t), 1) (3.2)

and

/h z,wg(t),1)dt < oo, (3.3)
0

it follows that the family {D® (wsA1v), v € Ag} is equicontinuous on [0,c0]. Moreover,
{D* ! (wqA1v), v € Ag} is uniformly bounded. Thus, by Theorem 3.1, to prove that { D! (wqu),
u € Ag} is relatively compact, it suffice to prove that all elements of {D* (wav), v € Ag} are
equiconvergent at infinity. Endeed, since for all v € Ag, D (w,41v) C C([0, oc]), it follows that
limy_ 00 D* ! (wav)(t) exists. On the other hand, it follows from (3.2), (3.3) and the dominated
convergence theorem that

tgnoo/f (s,ws(s)v(s), Do‘_l(wgv)(s)) ds = 0.

So, using (3.1), we obtain

lim ‘Dﬁ_l(wav)(t)f lim Dﬁ_l(wav)(t)‘ =

= lim /f (5,wa(s)v(s), D H(wgv)(s)) ds = 0.

That is {D°~!(wqu), u € Ag} is relatively compact in (C([0,00]), || - |lso). This implies that A;Aq
is relatively compact in (Eq, || - ||o)-

Similar process can be repeated to prove that A;Ag is relatively compact in (Eg, || - ||3). Thus
TA is relatively compact in (E, | - ||).

Now, we prove the continuity of 7" in A. Let (vj) be a sequence in Ag such that

o —vllp = HDﬁ_l(w,gvk) - Dﬁ_l(wgv)Hoo —0 as k— oo.
Then, by Lemma 2.2, ||vx — v||cc — 0 as k — oo, and, for any ¢ € [0, o], we have

}Dail(waAlvk)(t) — Dail(waAly)(t” -

/ (5, wa(s)vk(s), D7 wpvr) () — f(s,wp(s)v(s), D7~ (wpv)(s))] ds| <

< [ |#swnls)uns), D ) (5) = Flsswp(s)0(s), D o) (5)] do:
0

Since

[ £(s,w(s)u(s), DM wpur)(5)) — £(s,w5(s)0(s), D (wgv)(s))] < 2h(s,w5(s), 1),

and, by (H;) and Lebesgue’s theorem, we get
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HAlvk — AlvHa = HD‘“_l(waAlvk) — Da_l(waAlv)Hoo —0 as k— oo.

Hence, A; is continuous in A,. In a similar way, A is continuous in Ag and so 7" is continuous in
A. Therefore, by Schauder fixed point theorem there exists (x,y) € A such that T'(z,y) = (z,y).
That is, for £ > 0,

o0

z(t) = ¢ +/ <1 - ((1 - ‘;’)+>a1> F(s,w5(5)y(s), DP~Y(wgy)(s)) ds
0
and
00 81
y(t) =c —|—/ (1 - ((1 - j>+> )g(s,wa(s):p(s), D Ywax)(s)) ds.
0

We put u(t) = wa(t)z(t) and v(t) = wg(t)y(t). Then for any ¢t > 0, we have

u(t) = cwal(t) + walt /< (1_)+)a_1>f(s,v(s),Dﬁ—l(v)(s))ds (3.4)
0
and

o(t) = cws(t) + ws(t /( ( 1—>+>B_1>g(s,u(s),DO‘_l(u)(s))ds. (3.5)
0

Moreover, for ¢ > 0, we obtain

and
c 3c
Fws(t) < v(t) < Swp(t),

t
lim o(t) = lim D lu(t) = c
t—00 wﬁ(t) t—00

It remains to show that « is a solution of problem (1.1). Indeed, applying D® on both sides of
(3.4) and D? on both sides of (3.5), we obtain by Remark 2.1

D%u(z) = —f(x,u, D’ tu) ae. in R

and
DPu(z) = —g(z,u,D* 'u) ae. in RY.

Theorem 1.1 is proved.
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Example 3.1. Let p1, p2, q1, g2 > 0 such that max(p1,q1) > 1, max(p2,q2) > 1 and let k, h

be measurable functions satisfying

and

/t<a—1>1’1 |k(t)| dt < oo
0

/t<5—1)p2|h(t)\ dt < oco.
0

Then, there exists a constant b > 0 such that for each ¢ € (0, b], the problem

D%+ k(x)vP (Do) =0, « >0, in RY,
DPy + h(z)uP?(D*1u)®2 =0, v>0, in RT,

lim u(z) = lim v(x) =0,

z—07F x—07F
has a continuous solution (u,v) in RT satisfying
u(@) = lim D> lu(z) =c
20+ wo(x) 700
and
1 v(@) = lim D’Bflv(a;) =c
z—=0t wglT T—00
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