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SPACE-LIKE SURFACES IN MINKOWSKI SPACE E{
WITH POINTWISE 1-TYPE GAUSS MAP*

MMPOCTOPOBO-IIOAIBHI ITIOBEPXHI Y TPOCTOPI MIHKOBCBKOI'O Ef
3 HOTOYKOBUM IN'YCCOBHUM BIJOBPA’)KEHHAM ITEPIIOI'O TUITY

We first classify space-like surfaces in the Minkowski space E7, de Sitter space S2, and hyperbolic space H® with harmonic
Gauss map. Then we give a characterization and classification of space-like surfaces with pointwise 1-type Gauss map of
the first kind. We also present some explicit examples.

Hacamriepes HaBeeHO KIacH(iKaIiio IPOCTOPOBO-TIONIOHIX TOBEPXOHB Y mpocTopi MinkoBcskoro Ef, mpoctopi ge Cit-
tepa S} i rimepGoniunomy mpocropi H® 3 rapMoHiuHMM rayccoBuM BimoGpakeHHAM. ITicis IBOTO 0XapaKTEPH30BAHO
1 HaBe#eHO KiIAcH(DiKaIliI0 MPOCTOPOBO-MOAIOHNX MOBEPXOHB MEPLIOrO THITYy 3 MOTOYKOBHM TayCCOBHM BiIOOpaKEHHAM
nepmoro tuiy. Takoxk HaBeAEHO JesIKi KOHKPETHI HPHUKIIa 1.

1. Introduction. In late 1970’s B. Y. Chen introduced the notion of finite type submanifolds of
Euclidean space [6]. Since then many works have been done to characterize or classify submanifolds
of Euclidean space or pseudo-Euclidean space in terms of finite type. Also, B. Y. Chen and P. Piccinni
extended the notion of finite type to differentiable maps, in particular, to Gauss map of submanifolds
in [12]. A smooth map ¢ on a submanifold M of a Euclidean space or a pseudo-Euclidean space is
said to be of finite type if ¢ can be expressed as a finite sum of eigenfunctions of the Laplacian A

of M, that is, ¢ = ¢g + Zf_l ¢i, where ¢g is a constant map, ¢1, ..., ¢, are non-constant maps
such that A¢; = N, i € R, i=1,... k.

If a submanifold M of a Euclidean space or a pseudo-Euclidean space has 1-type Gauss map v,
then v satisfies Av = A(v+C') for some A € R and some constant vector C. In [12], B. Y. Chen and
P. Piccinni studied compact submanifolds of Euclidean spaces with finite type Gauss map. Several
articles also appeared on submanifolds with finite type Gauss map (cf. [2-5, 24, 25]).

However, the Laplacian of the Gauss map of several surfaces and hypersurfaces such as helicoids
of the 1st, 2nd, and 3rd kind, conjugate Enneper’s surface of the second kind and B-scrolls in a
3-dimensional Minkowski space 3, generalized catenoids, spherical n-cones, hyperbolical n-cones
and Enneper’s hypersurfaces in ]E’fJrl take the form

Av = f(v+C) (1.1)

for some smooth function f on M and some constant vector C' [17, 21]. A submanifold of a pseudo-
Euclidean space is said to have pointwise 1-type Gauss map if its Gauss map satisfies (1.1) for some
smooth function f on M and some constant vector C. In particular, if C' is zero, it is said to be of
the first kind. Otherwise, it is said to be of the second kind (cf. [1, 10, 15, 16, 18, 20, 22]).
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Remark 1.1. The Gauss map v of a totally geodesic submanifold M in ET" is a constant vector
and Av = 0, i.e., it is harmonic. For f = 0 if we write Av = 0 - v, then M has pointwise 1-type
Gauss map of the first kind. If we choose C' = —v, then (1.1) holds for any non-zero smooth function
f. In this case M has pointwise 1-type Gauss map of the second kind. Therefore, a totally geodesic
submanifold in E7" is a trivial submanifold with pointwise 1-type Gauss map of both the first kind
and the second kind.

The complete classification of ruled surfaces in E3 with pointwise 1-type Gauss map of the first
kind was obtained in [21]. Also, a complete classification of rational surfaces of revolution in E‘i’
satisfying (1.1) was recently given in [20], and it was proved that a right circular cone and a hyper-
bolic cone in E3 are the only rational surfaces of revolution in E3 with pointwise 1-type Gauss map
of the second kind. The first author studied rotational hypersurfaces in Lorentz—Minkowski space
with pointwise 1-type Gauss map [17], Moreover, in [23] a complete classification of cylinderical
and non-cylinderical surfaces in E}* with pointwise 1-type Gauss map of the first kind was obtained.

In this article, we study space-like surfaces in E} with pointwise 1-type Gauss map of the first
kind. Surfaces with harmonic Gauss map in E{ are of global 1-type Gauss map of the first kind.
We first give a characterization and classification of maximal surfaces and non-maximal space-like
surfaces in E} with harmonic Gauss map. We also prove that oriented maximal surfaces and surfaces
with light-like mean curvature vector in E} with harmonic Gauss map are the only surfaces in E{
with (global) 1-type Gauss map of the first kind.

Then we obtain the necessary and sufficient conditions on non-maximal space-like surfaces in
E{ with pointwise 1-type Gauss map of the first kind, and we give a classification of such surfaces.
Further, we prove that an oriented non-maximal space-like surface in E} has (global) 1-type Gauss
map of the first kind if and only if the surface has constant Gaussian curvature and parallel mean
curvature.

2. Prelimineries. Let E;* denote the pseudo-Euclidean m-space with the canonical pseudo-
Euclidean metric tensor of index ¢ given by

t m
9= —Zd$?+ Z d:c?,
i=1 j=t+1
where (21,2, ...,Tn) is a rectangular coordinate system in E;”. We put
S (r?) = {z € B : (w,2) = 72},
H™ M (—r?) = {z € B : (z,z) = —r 2},

where (, ) is the indefinite inner product of E}". Then S}*~'(r?) and H}*}'(—r?), m > 3, are com-
plete pseudo-Riemannian manifolds of constant curvature 2 and —r?, respectively. The Lorentzian
manifolds E{" and Sg’”‘*l(ﬂ) are known as the Minkowski and de Sitter spaces, respectively. For
t=1

H™ Y (—r?) = {ZL’ = (z1,...,%p) €EEP: (z,2) = —r 2 and z; > 0}

is the hyperbolic space in E7".
The light cone £C™~! with vertex at the origin in E} is defined to be
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cert = {z € E]": (z,2) = 0}.

A vector v in E" is called space-like (resp., time-like) if (v, v) > 0 (resp., (v,v) < 0). A vector
v is called light-like if it is nonzero and it satisfies (v,v) = 0.

Let M be an n-dimensional pseudo-Riemannian submanifold of the pseudo-Euclidean space E}".
We denote Levi-Civita connections of E}* and M by V and V, respectively. In this section, we
shall use letters X, Y, Z, W (resp., &, ) to denote vectors fields tangent (resp., normal) to M. The
Gauss and Weingarten formulas are given, respectively, by

VxY = VxY +h(X,Y), 2.1)
Vxé = —Ac(X) + Dx¢, (2.2)

where h, D and A are the second fundamental form, the normal connection and the shape operator
of M, respectively.

For each £ € T, le , the shape operator A¢ is a symmetric endomorphism of the tangent space
T,M at p € M. The shape operator and the second fundamental form are related by (h(X,Y),§) =
= (A X,Y).

The Gauss, Codazzi and Ricci equations are given, respectively, by

(R(X,Y,)Z,W) = (WY, Z),h(X,W)) — (h(X, Z), (Y, W)), (2.3)
(Vxh)(Y,Z) = (Vyh)(X, Z), (2.4)
<RD(X7Y)€777> = ([AﬁvAﬁ]X’Y>v (2.5)

where R, R are the curvature tensors associated with connections V and D, respectively, and Vi
is defined by
(Vxh)(Y,Z) = Dxh(Y,Z) — h(VxY,Z) — h(Y,VxZ).

A submanifold M is said to have flat normal bundle if RP = 0 identically, and the second fun-
damental form h of M in E is called parallel if VA = 0. A submanifold with parallel second
fundamental form is also known as a parallel submanifold.

Let {e1,€9,...,6e,} be a local orthonormal frame on M with e4 = (eq,e4) = £1 such that
€1,€2,...,e, are tangent to M and epy1,€en42,...,6€y are normal to M. We use the following
convention on the range of indices: 1 < A, B,C,...<m, 1 <, j,k,...<n,n+1<85,7,... <
<m.

Let {wap} with wap +wpa = 0 be the connection 1-forms associated to {ei, ..., e }. Then
we have

" n m
Veeei =Y ejwyler)ej + Y ephipes
Jj=1 B=n+1

and

n m
Ve €5 = — ZEjhgjej + Z 5uwﬁu(ek>€w
j=1 v=n+1

where hiﬁj ’s are the coefficients of the second fundamental form h.
The mean curvature vector H, the scalar curvature S and the squared length ||k||? of the second
fundamental form h are defined by
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1 m
H=-~- .
- Z 55trA565, (2.6)
B=n+1
IR[? =" eicjephlihl, 2.7)
i,5,8
S =n*(H,H) — ||| (2.8)

where trAg denotes the trace of shape operator Ag, i.e., trdg = Zj_ eihg.

The mean curvature vector /I of a submanifold of M in E"* is called parallel if DH = 0
identically.

The gradient of a smooth function f defined on M into R is defined by V f = 2:21 eiei(fe;

n
and the Laplace operator acting on M is A = E - €i(Ve,e; — e;e;). If the position vector = of
1=

M in E™ satisfies Az # 0 and A%z = 0, then M is called biharmonic.

A surface M in E] is called space-like if every non-zero tangent vector on M is space-like. Let
{e1,e2,e3,e4} be a local orthonormal frame on a space-like surface M such that e;, e5 are tangent
to M and e3, e4 are normal to M with eg = (eg, eg), f = 3,4.

The Gaussian curvature K is defined by K = R(ey, ea; €2, e1). Note that scalar curvature S and
Gaussian curvature of M satisfies S = 2K. Thus, (2.8) implies

K =2(H,H) — ||h|?*/2. (2.9)

From Gauss equation (2.3) we have K = e3(det A3 — det A4). If K vanishes identically, M is said
to be flat. On the other hand, M is called maximal if H = 0. A surface M is called pseudo-umbilical
if its second fundamental form / and the mean curvature vector H satisfies (h(X,Y), H) = p(X,Y)
for a smooth function p. Moreover, if the equation A(X,Y) = (X,Y)H is satisfied, then M is said
to be totally umbilical.

If we put hyjx = (Ve,h)(eise)), then for a space-like surface M in Ef the Codazzi equation
given by (2.4) becomes
hy oy =h

i jk,i) i7j7k:1727 623747

4 2 (2.10)
hfk,z' = ei(hfk> + Z 5~/h;kwvﬂ(€i) - Z ("‘}J'@(ei)hfk + Wk@(ei)hfa :

Let G(m—mn, m) be the Grassmannian manifold consisting of all oriented (m—n)-planes through
the origin of EJ* and A" " E}" the vector space obtained by the exterior product of m —n vectors in
Ef™. Let fiy A...Afi,,_, and gi; A...Ag;, . betwo vectors in A" " E}", where {f1, fo,..., fm}
and {g1,92,...,9m} are two orthonormal bases of E}*. Define an indefinite inner product (,) on
A" TEP by

<fi1 TARRRWA fim—nﬂgil ARERNA gim7n> = det(<fizvgjk>)' (2.11)

Therefore, for some positive integer s, we may identify A" " E™ with some pseudo-Euclidean
space Eﬁv , where N = (an) Letey,...,en,€nt1,---,em be an oriented local orthonormal frame
on an n-dimensional pseudo-Riemannian submanifold M in E}* with ep = (e, ep) = %1 such that
e1,...,e, are tangent to M and e,41, ..., €, are normal to M. The map v: M — G(m —n,m) C
C EY from an oriented pseudo-Riemannian submanifold M into G(m — n,m) defined by
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v(p) = (ent1 A ensa A ... New)(p) (2.12)

is called the Gauss map of M that is a smooth map which assigns to a point p in M the oriented
(m — n)-plane through the origin of E}” and parallel to the normal space of M at p [22]. We put
e=(V,V) = €pt1€nt2..-Em = =1 and

SNH(1) in EN, if e=1,

HNTY(-1) in EY, if e=-1

Then the Gauss image (M) can be viewed as v(M) C MN=1(e).

3. Space-like surfaces in E‘ll with harmonic Gauss map. The Laplacian of the Gauss map
of an n-dimensional oriented submanifold M of a Euclidean space E"*2 was obtained in [19]. By
a similar calculation, for the Laplacian of the Gauss map v given by (2.12) of an n-dimensional
oriented submanifold M of a pseudo-Euclidean space E?” we have the following lemma.

Lemma 3.1. Let M be an n-dimensional oriented submanifold of a pseudo-Euclidean space
E?H. Then the Laplacian of Gauss map v = ep1 N\ ent2 is given by

Av = Hthl/ + 2 Z EjEkRD(ej, €k; n+1, €n+2)€j N ep+
1<j<k<n

—|—V(tI‘An+1) VAN En+2 + En+1 A V(trAn+2)+

n

+HZ€jW(n+1)(n+2)<6j)H/\ej, 3.1
j=1

where HhH2 is the squared length of the second fundamental form, RP is the normal curvature
tensor and VirA, is the gradient of trA,.

Remark 3.1. From (3.1) we see that if an n-dimensional submanifold M of E?” has pointwise
1-type Gauss map of the first kind, then equation (1.1) is satisfied for f = ||k||?> and C' = 0.

The Gauss map of a surface M in E} is said to be harmonic if Av = 0. Clearly, a harmonic
Gauss map is of (global) 1-type of the first kind. In the Euclidean space E*, a plane is the only surface
with harmonic Gauss map. However, in the Minkowski space E{ there are non-planar surfaces with
harmonic Gauss map.

Lemma 3.2 [8]. Let M be a space-like surface with parallel mean curvature vector H in Ef.
Then we have:

(a) (H,H) is constant,

(b) [Am, A¢] = 0 for any normal vector field &.

By combining the part (b) of Lemma 3.2 and the Ricci equation (2.5), we state the following
lemma for later use.

Lemma 3.3. Let M be a non-maximal space-like surface in the Minkowski space E$. If the
mean curvature vector H of M is parallel, then the normal bundle of M is flat, i.e., RP = 0.

Proposition 3.1. Let M be an oriented maximal surface in the Minkowski space E}. Then the
Gauss map v of M is harmonic if and only if M is a flat surface in B} with flat normal bundle.
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Proof. Let M be a maximal surface in Ef, i.e., H = 0. Then, from (2.9) we have ||h|? = —2K.
Thus, (3.1) implies

Av = -2Kv + QRD(el, €2; es, 64)61 ANCHR 3.2)

Therefore, v is harmonic if and only if K = 0 and R” = 0.

Proposition 3.1 is proved.

Next, we obtain a non-planar maximal surface in E{ with harmonic Gauss map.

Example 3.1 [11]. Let Q be an open, connected set in R? and ¢: © — R a smooth function.
We consider the surface M in the Minkowski space E] given by

z(u,v) = (¢(u,v),u,v, $(u,v)). (3.3)

This surface lies in the degenerate hyperplane Ho = {(1, 72,23, 74) € E} | 1 = 24}. By a direct
calculation, we see that M 1is a flat surface with flat normal bundle and the mean curvature vector H
of M in Ef is given by

H = (A¢,0,0,A9). (3.9)

Therefore, M is maximal if and only if ¢ is harmonic.

Hence, Proposition 3.1 implies that if ¢ is a harmonic function, then the surface given by (3.3)
has harmonic Gauss map.

Proposition 3.2. A non-planar flat maximal surface in the Minkowski space E{ with flat normal
bundle is congruent to the surface given by (3.3) for a smooth harmonic function ¢: Q C R? — R,
where Q is an open set in R?.

Proof. Let M be a non-planar flat maximal surface in E] with flat normal bundle.

Since M is flat, there exist local coordinates (u,v) on M such that e; = 9/0u, es = 9/0v.
Then the induced metric tensor is given by g = du? + dv? and also wys = 0. Let {e3, e4} be a local
orthonormal normal frame on M with e3 = —e4 = 1, where €3 = (eg,eg) . As M is maximal, we
have Ag = (hZ) with h’fl —i—h§2 =0, 8 = 3,4, thatis, trA3 = trA4 = 0. Moreover, since M is flat,
from the Gauss equation (2.3) we get det A3 = det A4. Therefore, the eigenvalues of A3 and A4 are
equal which imply that A3 = FA4 as RP = 0. Without loss of generality, we may take Az = Ay.

Let 2 be an open set in R? and z: Q — M C E{ be an isometric immersion. From the Gauss
formula we obtain

Tyy = B3 (e3 — €4), Ty = hiy(e3 — ey), Ty = —h3 (€3 — e4) (3.5)
as wie = 0. Also, the first and second equations in (3.5) imply that
Tuu + Tow = 0. (3.6)

Moreover, Ty, Tuy and z,, are pairwise linearly dependent light-like vector fields.
On the other hand, by a direct calculation, using the Weingarten formula and (3.5), we get

Tyuu — (8u (hil))l) + W34(au)h:%1) (63 — 64), (3.7)
Tuww = (0o (hil)’l) + w34(8v)h:f1) (e3 — ey). (3.8)

Now we define a vector valued function y = (y',9%,v%,v*): Q — E{ as y = x4, From
equations (3.5), (3.7) and (3.8) we have y,, = v1y and y, = 2y for some smooth functions ~; and
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~9. Thus, the coordinate functions of y satisfy

yi=my', oyl =y, i=1,2,34. (3.9)

By solving these equations, we get 3/ = cjyl, i = 2,3,4, for some constants ¢; € R. Thus, we
obtain

Tuw = Y10, (3.10)

where 19 = (1, co, c3,¢4) is a constant light-like vector. In a similar way, we get

Tuw = P210 and Ty = 300, (3.11)

where ¢o, ¢3: Q@ C R? — R are some smooth functions. By integrating (3.10) and (3.11), we obtain

z(u,v) = ¢(u,v)no + um + vy,

where ¢: Q0 — R is a smooth function and 7;, 72 are constant vectors such that (ng,n;) = 0,
(ni,m;) = 0i5, 1,7 = 1,2. Equation (3.6) implies that ¢ is harmonic. By choosing 79 = (1,0,0,1),
m = (0,1,0,0) and 12 = (0,0, 1,0), the proof is completed.

By combining Propositions 3.1 and 3.2, we state the following classification theorem for maximal
surfaces in E} with harmonic Gauss map.

Theorem 3.1. An oriented maximal surface with harmonic Gauss map in the Minkowski space
E{ is either an open part of a space-like plane or congruent to a surface given by (3.3) for a smooth
harmonic function ¢: Q C R? — R, where Q is an open set in R?.

Now we investigate non-maximal space-like surfaces in E} with harmonic Gauss map.

Theorem 3.2. Let M be an oriented non-maximal space-like surface in the Minkowski space
E$. Then the Gauss map v of M is harmonic if and only if M is flat in ES with light-like and
parallel mean curvature vector.

Proof. Let M be an oriented non-maximal space-like surface in E{ with harmonic Gauss map
v. Then we have Av = 0. From (3.1) we obtain ||h||?> = 0 and R” = 0. That is, the normal bundle
is flat. So we can choose a local parallel orthonormal normal frame {e3,es} on M. Thus we have
w34 = 0, and from (3.1)

V(trAs) ANes+e3 AV (trdy) =0 (3.12)

which implies that trAs and trA, are constants. Therefore, DH = 0, that is, H is parallel, and
(H, H) is constant because of part (a) of Lemma 3.2.

Now we will show that H is light-like. Suppose that H is not light-like, that is, (H, H) # 0. As
|h||? = 0 we have K = 2(H, H) # 0 from (2.9). Thus, M is not flat.

On the other hand, since the normal bundle is flat and (H, H) # 0, we can choose a local
orthonormal frame field {e1,e9,€3,e4} on M such that e3s = H/«a and ey are parallel, the shape
operators are diagonalized, and ej, ey are eigenvectors of As, where o = /|(H, H|). So we have
Az = diag(h?;, h3,), As = diag(hf;, —h1y), hi; + h3, = 2a and w3y = 0. Considering these, it
follows from Codazzi equation (2.10) that

61(h§2) = _el(hiﬁ) = W12(€2)(h?1)1 - h§2) ) (3.13)
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e1(hyy) = —e1(hi;) = 2wia(e2)hdy, (3.14)
ea(h})) = —ea(h3y) = wiz(er) (h3) — h3y) (3.15)
ea(hiy) = —ez(hiy) = 2wiz(e1)hd;. (3.16)
As ||h]|? = 0, we have
2 2 2
(h3)" + (h3y)" =2(h1y)", (3.17)

from which we obtain
h3e1(h$)) + h3ze1(hdy) = 2hi ex(h1)),
h3ea(h)) + h3gea(hdy) = 2hi ea(h1)).
Using (3.13)—(3.16), the above equations become

—W12<€2)((h?1 - h§2)2 - 4(hil1)2) =0, (3.18)
wiz(er) (b3 — hdy)? — 4(h11)%) = 0. (3.19)

Since M is not flat, at least one of wia(eq) and wiz(e2) is not zero. Therefore, (3.18) and (3.19)
imply that
(h:fl - h§2)2 = 4(%1)2-

Considering this and (3.17) we obtain h3,h3, + (h$;)? = 0. Therefore, the Gauss curvature K =
= e3(h3;h3, + (h$;)?) = 0 and hence 2(H, H) = K = 0 which is a contradiction. As a result, H
is light-like. Since (H, H) = 0 and ||h||?> = 0, (2.9) implies K = 0, i.e., M is flat.

Conversely, we assume that M is a flat surface in E] with parallel and light-like mean curvature
vector H, that is, K = (H,H) = 0. So we have ||h||> = 0 from (2.9). On the other hand,
Lemma 3.3 implies that M has flat normal bundle, i.e., RP = 0. Therefore, there exists a local
parallel orthonormal frame {es,es} of normal bundle of M with €3 = —e4 = 1 and the shape
operators As and A4 can be diagonalized simultaneously by choosing a proper frame {ej, e} of
tangent bundle of M, namely, we have

Ag = diag(hf,, hb,), B =34,
also, w34 = 0. Moreover, since H is light-like, we get

trA; = trAs =pu#0 and H = g(eg —ey).
In addition, since H is parallel and w34 = 0, p is a constant. Thus, we obtain V(trds) = V(trdy) =
= (. Therefore, equation (3.1) gives Av = 0.

Theorem 3.2 is proved.

A space-like surface in the Minkowski space E} is called marginally trapped (or quasi-minimal)
if its mean curvature vector is light-like at each point on the surface. We will use the following
classification theorem of marginally trapped surfaces with parallel mean curvature vector in the
Minkowski space E} obtained in [14].
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Theorem 3.3 [14]. Let M be a marginally trapped surface with parallel mean curvature vector
in the Minkowski space-time E‘ll. Then, with respect to suitable Minkowskian coordinates (t, o, x3,z4)
on EY, M is an open part of one of the following six types of surfaces:

(i) a flat parallel biharmonic surface given by

1-b 1+0b 1-0 1+
x(u,v):( 5 u? + ;_ v2,u,v,2u2+;v2>, b eR;

(i1) a flat parallel surface given by
z(u,v) = a(coshu, sinh u, cosu,sinu), a > 0; (3.20)

(i11) a non-parallel flat biharmonic surface with constant light-like mean curvature vector, lying
in the hyperplane Ho = {(t, 2, x3,t)}, but not in the light cone LC;

(iv) a non-parallel flat surface lying in the light cone LC;

(v) a non-parallel surface lying in the de Sitter space-time S3(r?) for some v > 0 such that the
mean curvature vector H' of M in S3(r?) satisfies (H', H') = —r?;

(vi) a non-parallel surface lying in the hyperbolic space H>(—r?) for some r > 0 such that the
mean curvature vector H' of M in H3(—r?) satisfies (H', H') = 2.

Conversely, all surfaces of type (i) - (vi) above give rise to marginally trapped surfaces with parallel
mean curvature vector in Ef.

Remark 3.2 [9]. We can combine cases (i) and (iii) of Theorem 3.3 into a single case, namely,
flat surfaces defined by (3.3) such that ¢ is a function satisfying A¢ = ¢ for some real number
c#0.

The surfaces type (i) and (ii) in Theorem 3.3 are two explicit examples for Theorem 3.2. In the
next theorem we determine flat surfaces in S3(r?) C E{ with parallel and light-like mean curvature
vector in E].

Theorem 3.4. Let M be a space-like surface in the de Sitter space S3(r?) C Ef for some r > 0.
If M is a flat surface with parallel and light-like mean curvature vector in E{, then M is congruent
to the surface given by

z(u,v) = <;(u2 + v2),u, v, g(u2 +v?) — 71ﬁ> (3.21)

Proof. Suppose that M is a flat space-like surface in S3(r?) C E] with parallel and light-like
mean curvature vector H in E}. Since M is flat, there exist local coordinates u and v on M such
that the induced metric tensor is ¢ = du? + dv?. Let z: Q@ — M C S}(r?) C E{ be an isometric
immersion, where € is an open set in R%. Then, we have (x,z) = r~2. Thus, a local frame field
{e1,€2,e3,e4} on M can be chosen as e; = 0, ea = 0, e3 = rx, and ey is a unit normal vector
field orthogonal to ez such that H = —r(es — e4) as H is light-like (see [8], Lemma 2.2).

From the Weingarten formula (2.2), we have 6(%63 = r0, and %aﬂeg = r0d, which imply
As = —rl, where [ is identity operator acting on tangent bundle of M. Moreover, since M is flat
and H = —r(e3 — e4), we have det A3 = det Ay, trAs = trA, from which and A3 = —rI we
obtain Az = Ay. Thus, M is pseudo-umbilical. Theorem 4 [7] implies that M is biharmonic.

As M is a biharmonic surface with light-like mean curvature vector, from the proof of [11]
(Theorem 6.1), one can see that = is of the form
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z(u,v) = (¢(u,v), u, v, p(u,v) = ¢o) (3.22)
for a smooth function ¢ and constant ¢g # 0. As (z,x) = 72, from (3.22) we obtain
—2¢0¢ + 3 +u® +v? =712
By considering this equation and a linear isometry of E{, we may assume that

d(u,v) = g(ﬁ +v?)  and o= % (3.23)
from which and (3.22) we have (3.21).
Theorem 3.4 is proved.
Similarly, we state that the following theorem holds true.
Theorem 3.5. Let M be a space-like surface in the hyperbolic space H?(—r?) C E? for some
r > 0. If M is a flat surface with parallel and light-like mean curvature vector in E$, then M is
congruent to the surface given by

z(u,v) = (1 + C(’LLQ + v?),u, v, C(’LLQ + v2)>. (3.24)
ro 2 2

The proof of this theorem is similar to the proof of Theorem 3.4.

Corollary 3.1. Up to linear isometries in Y, the surface given by (3.21) (resp., (3.24)) is the
only surface in S3(r?) C Ef (resp., H3(r?) C E}) with harmonic Gauss map.

By combining the results given in this section, we state that the following theorem holds true.

Theorem 3.6. Let M be an oriented space-like surface in the Minkowski space Ef. Then the
Gauss map v of M is harmonic if and only if M is congruent to one of the following six types of
surfaces:

(1) an open part of a space-like plane;

(i1) the flat surface given by (3.3) for a smooth function ¢: 2 — R satisfying A¢p = ¢, where ()
is an open set in R? and c € R;

(ii1) the flat surface given by (3.20);

(iv) a non-parallel flat surface lying in the light cone LC;

(V) the flat surface given by (3.21) lying in the de Sitter space-time S3(r?);

(vi) the flat surface given by (3.24) lying in the hyperbolic space H?(—r?).

4. Space-like surfaces in IE‘l1 with pointwise 1-type Gauss map of the first kind. Let M be an
oriented space-like surface in the Minkowski space E{ with harmonic Gauss map v. Then v satisfies
(1.1) for f = 0 and C' = 0. Thus, a harmonic Gauss map v is of pointwise 1-type of the first kind.
In this section, we obtain a characterization of surfaces in E{ with pointwise 1-type Gauss map of
the first kind.

Theorem 4.1. Let M be an oriented maximal surface in the Minkowski space E}. Then M has
pointwise 1-type Gauss map of the first kind if and only if M has flat normal bundle. Moreover, the
Gauss map v satisfies (1.1) for f = ||h||* and C = 0.

Proof. 1f M is maximal, then the Gauss map v satisfies (3.2). Hence, v is of pointwise 1-type
of the first kind if and only if RP = 0.

We now give the following lemma.
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Lemma 4.1. Let M be an oriented maximal surface in the Minkowski space Ei. If M has
pointwise 1-type Gauss map of the first kind, then the function f = ||h||® satisfies

e1(f) = —dewiz(e2) f, (4.1
e2(f) = dewra(er)f, (4.2)

where {e1,es} is a local orthonormal frame for tangent bundle of M and € € {—1,1}.

Proof. Let M be a maximal surface in E} with pointwise 1-type Gauss map of the first
kind. Then Theorem 4.1 implies that M has flat normal bundle. Thus, the shape operators can be
diagonalized simultaneously, i.e., there exists an orthornormal frame field {e1, e2, e3,e4} on M such
that Ag = diag(hfl, —hfl), B =3,4, as H = 0. Therefore, we have from (2.7)

=1l =2 (es(h}))* + ea(h))?) - (4.3)

and Codazzi equation (2.10) yields

e1(hi)) — eahfywza(er) = —2wia(e2)hiy, (4.4)
e1(hy) + e3hfiwza(er) = —2wia(e2)hiy, (4.5)
ea(hiy) — eahfywaa(es) = 2wia(en)hiy, (4.6)
ea(hi)) + e3h3 wases) = 2wia(er)hd;. 4.7)

By multiplying (4.4) and (4.5), respectively, e3h$, and g4k}, and adding them, we have

esttier (b)) + eahidyen () = —2wna(ea) (ea(hd))? + ea(hi)?).

By using (4.3) again in this equation, we obtain (4.1). In a similar way, we see that (4.6) and (4.7)
give (4.2).

Lemma 4.1 is proved.

Proposition 4.1. Let M be an oriented maximal surface in the Minkowski space E}. Then M
has (global) 1-type Gauss map of the first kind if and only if the Gauss map v of M is harmonic.

Proof. We assume that M has (global) 1-type Gauss map v of the first kind. Then Theorem 4.1
implies that M has flat normal bundle. On the other hand, since v is (global) 1-type of the first kind,
(1.1) is satisfied for f = fp, where fp is a constant. Moreover, Lemma 4.1 implies that f satisfies
(4.1) and (4.2) from which we obtain wia(e1) fo = wia(e2)fo = 0 that imply fo = 0 or w2 = 0. In
the case fo = 0, we have Av = for = 0, i.e., v is harmonic. Otherwise M is flat, and it follows
from Proposition 3.1 that v is harmonic.

The converse is obvious.

Proposition 4.1 is proved.

Now we study non-maximal space-like surfaces in E} with pointwise 1-type Gauss map of the
first kind.

Theorem 4.2. Let M be an oriented non-maximal space-like surface in . Then M has point-
wise 1-type Gauss map of the first kind if and only if M has parallel mean curvature vector.
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Proof. Let M be an oriented non-maximal space-like surface in E}. Suppose that M has
pointwise 1-type Gauss map of the first kind. Then (1.1) is satisfied for f = ||h||*> and C' = 0. From
(1.1) and (3.1) we obtain that R” = 0 and

2
V(trAs) Aes+es AV(trAs) +2) wsa(e;)H Aej =0. (4.8)
j=1

Since R = 0, there exists a local orthonormal frame {es,e,} of normal bundle of M such that
w34 = 0. So, it follows from (4.8) that VtrAz = VtrA, = 0, that is, trAg = constant, 3 = 3,4,
from which and w34 = 0 we have DH = 0.

Conversely, let H be parallel. From Lemma 3.3 we have RP” = 0. Thus, there exists a local,
orthonormal frame {e3, e4} of normal bundle of M such that wsy = 0. So, it follows from DH = 0
that trAs and trA, are constants. Therefore, equation (3.1) implies that Av = ||h||?v, that is, M
has pointwise 1-type Gauss map of the first kind.

Theorem 4.2 is proved.

Example 4.1. Let M be a surface in E{ given by

z(u,v) = %(u cosh v/2v, usinh v/2v, V2 sin v/2u — u cos v/2u, v/2 cos vV2u + usin v2u).
Then the mean curvature vector H of M is parallel and light-like [14]. Moreover, the Gaussian
curvature of M is K = u~* which implies ||h||?> = —2u~* from (2.9). Therefore, M has proper
1-type Gauss map of the first kind because of Theorem 4.2, that is, (1.1) is satisfied for C' = 0 and
f=1n?=—2u""

In [13], a complete classification of space-like surfaces with parallel mean curvature vector was
given. By combining Theorem 3.1 [13] and Theorem 4.2, we have the following theorem.

Theorem 4.3. Let M be an oriented non-maximal space-like surface in B} with space-like or
time-like mean curvature vector. Then M has pointwise 1-type Gauss map of the first kind if and
only if M is a CMC surface lying in the light cone LC C Ef, a Euclidean hyperplane E3 C E},
a Lorentzian hyperplane B3 C Ei, the de Sitter space-time S3(c?) E{, or the hyperbolic space
H3(—c?) C Ef.

In the next proposition we obtain characterization of non-maximal surfaces with (global) 1-type
Gauss map of the first kind.

Proposition 4.2. Let M be an oriented space-like surface in the Minkowski space E3 with light-
like mean curvature vector. Then M has (global) 1-type Gauss map of the first kind if and only if the
Gauss map v of M is harmonic.

Proof. Suppose that M has non-harmonic, (global) 1-type Gauss map of the first kind with
light-like mean curvature vector. Then (1.1) is satisfied for f = fy and C' = 0, where fy # 0 is a
constant. Moreover, Theorem 4.2 implies that the mean curvature vector H of M is parallel. Since
v is non-harmonic, it follows from Theorems 3.2 and 3.3 that M is congruent to a non-flat surface
lying in either S$(r?) or H3(—r?), and if M is lying in S$(r?) (resp., in H3(—7r?)), then its mean
curvature vector H' in S3(c?) (resp., in H3(—r?)) satisfies (H', H') = —r? (resp., (H', H') = r?).
Also, from Remark 3.1 we have ||h?|| = fo.

Let = be the position vector of M in E} and (x,z) = e3r~2, where e3 = +1. We choose
a local orthonormal frame {e3,es} of the normal bundle of M such that e3 = rz and H =
= 837”2(63 — e4). Since e3 = rx is parallel, we have w3y = 0. Moreover, RP =0, i.e., M has flat
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normal bundle. Thus, the shape operators of M are simultaneously diagonalizable. So, there exists a
local orthonormal frame {e;, ez} of tangent bundle of M such that Ag = diag(hfl, th), 8 =3,4,
and

B3, + hdy = b + hgy = 212 (4.9)

On the other hand, since ||| and (H, H) are constants, (2.9) implies the Gaussian curvature K of
M is constant, i.e., we have Ko = e3(h?,h3, — hi h3,), where K # 0 is a constant, from which
and (4.9) we obtain

ei(h}1)his + hiiei(h3y) = ei(hiy)hgy + hiyei(h3y)

and
ei(hd) = —ei(hy), =12, B=34. (4.10)

Using these equations we get
ei(hi)(hiﬁ - h%z) = ei(hﬁ)(hﬁ - héz)- (4.11)

In addition, considering (4.10), the Codazzi equation (2.4) yields

ex(h)) = —wia(e2) (hfy — h5,), (4.12)
ea(hY)) = wialer) (b, — hiy), B=3,4. (4.13)

So, it follows from these equations and (4.11) that
2 2 .
wiale) (W = ha)* = (b = hd)*) =0, i=1,2. (4.14)

As M is not flat, we have wia # 0. Thus, (4.14) implies (b3, — hdy)? = (h%, — hdy)? from which
and (2.9) we get fo = ||h||?> = 0 which is a contradiction. Therefore, the Gauss map v is harmonic.

The converse is obvious.

Proposition 4.2 is proved.

Next we give a characterization for non-maximal space-like surfaces in the Minkowski space E{
with (global) 1-type Gauss map of the first kind.

Theorem 4.4. Let M be an oriented non-maximal surface in the Minkowski space E}. Then M
has (global) 1-type Gauss map of the first kind if and only if M has parallel mean curvature vector
and constant Gaussian curvature.

Proof. Let M be an oriented non-maximal surface in Minkowski space E{. First we assume
that M has (global) 1-type Gauss map of the first kind. Then it follows from (1.1) and (3.1) that
|h||> = fo for some constant fy. Also, Theorem 4.2 implies that M has parallel mean curvature
vector which implies (H, H) is constant. Therefore, (2.9) implies that the Gaussian curvature K of
M is constant.

Conversely, let M has parallel mean curvature vector and constant Gaussian curvature. By
Theorem 4.2 we have Av = ||h]|?v. Also, equation (2.9) implies that ||h||? is constant. Therefore,
the Gauss map of M is of 1-type of the first kind.

Theorem 4.4 is proved.

Next we give an example of a surface with non-harmonic (global) 1-type Gauss map of the first
kind.
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Example 4.2. Let M be a surface in E{ given by

z(u,v) = (acoshu,asinhu,bcosv, bsinv), b*> —a®#0, ab#0.

Let ¢ = /[b2 — a?|. Then we have M = H'(—a™') x S*(b71) C S}(c72) C Ef if b2 —a? > 0,
and M = H'(—a™ ') x S}(b7 1) € H3}(—c?) c E} if > —a? < 0. By a direct calculation, it
can be seen that M has parallel mean curvature vector and constant Gaussian curvature. Hence,
Theorem 4.4 implies M has (global) 1-type Gauss map of the first kind.
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