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ON CESARO AND COPSON NORMS OF NONNEGATIVE SEQUENCES
PO HOPMH YE3APO I KOIICOHA HEBIJ’EMHUX MMOCAIIOBHOCTEN

The Ceésaro and Copson norms of a nonnegative sequence are [”-norms of its arithmetic means and the corresponding
conjugate means. It is well known that, for 1 < p < oo, these norms are equivalent. In 1996, G. Bennett posed the problem
of finding the best constants in the associated inequalities. The solution of this problem requires the evaluation of four
constants. Two of them were found by G. Bennett. We find one of the two unknown constants and also prove one optimal
weighted-type estimate regarding the remaining constant.

Hopmu Yesapo i Korcona HeBif’eMHHX MOCHTIJOBHOCTEH BH3HAYAIOTHCS sIK [P-HOpMH TXHIX apr()METHYHUX CEpelHiX i
BIJMOBIIHUX CHPSDKEHUX cepenHix. Bimomo, mo st 1 < p < oo ui HopMu ekBiBasieHTHI. Y 1996 p. I. bennert nocraBus
3aj1ady MpO 3HAXO/PKEHHS HaWKpPAIUX CTalHX y HEPIBHOCTSX, IO ONHCYIOTH LIO €KBIBAJICHTHICTh. PO3B 30K mi€l 3amadi
BHUMarae OLiHOK YOTUPbOX cTanuX. [[Bi 3 Hux Oynu 3Haiineni I. benHerTom. VY wmiit cTarTi 3HAWICHO OJHY 3 IBOX HEBiIOMHUX
cTanux. JoBeIeHO TaKoX ONTHUMAJIBHY OL[IHKY BaroBOTO THITY JUISl CTAJION, IO 3aJIMIIMIIACS.

1. Introduction. Let 1 < p < oo. Denote by ces(p) the set of all sequences x = {x,,} such that

[e) 1 n p\ 1/p
X flces) = [ D - >l < o0.
n=1 k=1

By Hardy’s inequality [4] (Ch. 9), [P C ces(p), 1 < p < oo.
We consider also the space cop(p) which is defined as the set of all sequences x = {z,,} such
that

o] o] ’.’E’ p\ 1/p
k
HXHcop(p): E E T < 0.
n=1 \k=n

For any 1 < p < 0o, ces(p) = cop(p) (see [1], § 10). Moreover, G. Bennett [1] proved the following
theorem.
Theorem 1.1. Ifp > 2, then

HXHces(p) < C(p)l/pHXHCOp(p)7 (1.1)
where
- U
C(p>_z:1np’ < p < 0.
If1 <p <2, then
HXHcop(p) < (p - 1)l/puxnces(p)' (1.2)

The constants are both best possible.
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Furthermore, G. Bennett [1] posed the problem: find the best constants in the inequalities

HXHces(p) < ApHx”cop(p) Jor 1<p<2 (1.3)

and

HXHcop(p) < Bp”XHces(p) fOl’ p> 2. (1.4)

Similar relationships between LP-norms of the Hardy operator and its dual for functions on
(0,+00) were studied in the work [5].

Denote by M™T(R.) the class of all nonnegative measurable functions on R, = (0, +00). Let
f e MHT(R4). Set

T

Hf(w):i/f(t)dt and H*f(a:):/f(tt)dt.

0

By Hardy’s inequalities [4] (Ch. 9), these operators are bounded in LP(R,) for any 1 < p < oo.
Furthermore, it is easy to show that for any 1 < p < oo the LP-norms of Hf and H*f are
equivalent.

The main result in [5] is the following theorem.

Theorem 1.2. Let f € MT(Ry) and let 1 < p < co. Then

(p=DIHSp < 1H fll, < (p— DYPIHfp (1.5)
ifl<p<2, and

(0= DYPIHflp < |H fllp < (0= DIHS ] (1.6)

if 2 < p < oo. All constants in (1.5) and (1.6) are the best possible.

As it was observed in [5], the first inequality in (1.6) can be derived from the results obtained
in [3] and [6].

We observe also that the first inequality in (1.6) and the second inequality in (1.5) were obtained
in [1] (§ 21). We didn’t mention this fact in the paper [5] because we learned about the monograph
[1] when [5] was already published.

Note that the constant in the first inequality in (1.6) differs from that in (1.1).

One of the main results of this paper is that the best constant in (1.4) is B, = p — 1. Our proof
of this result doesn’t rely on the second inequality in (1.6) (apparently it cannot be directly derived
from the latter inequality).

As for the best constant in the inequality (1.3), this problem remains open. However, we prove
the following result: if 1 < p < 2, then

o0 n p ) 00 p
> (i Zxk> <(p-1)"VY <Z ‘”’Z“w;;(k)) : (1.7)
n=1 k=1 n=1 k=n
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where

[e%e) 1 1/p
wp(n) = (np_l kz: k:p> .

The constant in (1.7) is optimal.
Since wp(n) < ¢ (p)'/P (see Lemma 2.1 below), (1.7) implies that

((p)'/P

1%l ces(p) < m”xucop(p), l<p<2 (1.8)

This result agrees with (1.1) for p = 2. Besides, the constant in (1.8) has the optimal asymptotic
behaviour as p — 1 + . However, it is not difficult to show that for 1 < p < 2 the value of the
constant in (1.8) is not the best possible.

We observe that the main role in this paper belongs to Lemma 2.3 which gives explicit link
between Césaro and Copson norms.

2. Lemmas. The following lemma was proved in [1, p. 14].

Lemma 2.1. Let 1 < p < 0. Set

- 1
Vp(n):nplkzkp, neN. 2.1)

Then {Vp(n)} strictly decreases as n increases and

1
—— <y <Cp), neN. (2.2)
p—
The constants in (2.2) are both best possible and there is equality on the right only when n = 1.

Remark 2.1. We observe that the decrease of the sequence {up(n)} was stated in [1] without
proof. However, the proof follows immediately from the well-known representation

00
tpflefnt

=1 1
kz W= T / — (2.3)
=n 0

Indeed, from (2.3) we have

1 P lez
= dz.
Vp(n) F(p) / n(l _ e—z/n) o
0
It remains to note that the function ¢(z) = /(1 — e™*), x > 0, increases on (0, c0).

Observe also that -
=1 / dx 1
— < —= (2.4)
2 =) = e

Together with the left inequality in (2.2), this implies that
lim vy(n) = —. (2.5)

n—00 p—l

As usual, we set p’ = p/(p—1) for 1 < p < 0.
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Lemma 2.2. Let 1 < p < oo and let N > 2 be an integer number. Set

n " for n=1,...,N,

o) =
0 for n>N
and xV) = {x&N)}. Then
. HX(N) Hces(p) /
R ™ A 26)
and
]|
lim — "oP®) _ 2.7)

N—oo In N

Proof. For the sum sglN) = Z:_l x,gN) we have

P+ )V 1] <oV <, 1<nsN,

and s,(qN) = sg\],v) for n > N. It easily follows that

0o S(N) p
(P)P(1—en)InN <) ( - ) < (P)P(InN +p),
n=1

where ey > 0, ey — 0 as NV — oco. These inequalities imply (2.6).
Further, for 2 <n < N,

N

9] 1‘(N) N dr
= Z kT - Z L / x1+1/p = (n —pl)l/p'
k=n k=n o1
Thus,
i (i™M)? < PPN + €,
n=1

where C' is a constant. On the other hand,
n,(lN) > p(n_l/p — (N + 1)_1/p), 1<n<N.

From here, for any € > 0 and sufficiently big IV,

N

Y M) = pP(1—e)InN.

n=1

These estimates imply (2.7).
Lemma 2.2 is proved.
Now we prove our main lemma. Throughout this paper, for a nonnegative sequence {x,}, we

denote
n [L‘n o0
5n = kzlmk =" = stk. (238)
= =n

Also, we use notation (2.1).
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Lemma 2.3. Let {x,} be a positive sequence and let 1 < p < co. Set
1
-1
on= [ (2 -v&)" v
0

1
671 = /(nn—i-l + yfn)pil dy7
0

and
1
Sn p—2
Yo = (* - y€n> (M1 + y&n)P ™" dy.
0
Then - -
Sp \P
> () =p X mmann)
n=1 n=1
and

(o] [o.¢] oo
>l =p> zuBn=pp-1) 2.
n=1 n=1 n=1

Proof. First, applying summation by parts, we have (sg = 0)

> (Y = sﬁnki ==

n=1 n=1

0o 1
:pz l;fp(nl) / dy pzxnanyp( ),
0

n=1 n=1

which gives (2.9).
Further,

P - Znn = Z 77n+1 pz$n/ Mn+1 + ygn)p ! dy,

n=1 n=1

and we obtain the left equality in (2.10).

V. 1. KOLYADA

2.9)

(2.10)

2.11)

Next, we apply summation by parts one more time. Set ¢, (y) = 711 + ¥&n, y € [0,1]. Then

(Pn(y>p_1 - (Pn-i-l(y)p_l = (nn—I—Q + £n+1 + ygn)p_l - (nn-&-? + y§n+1)p_

€n+l+y£n
=(p-1) / (N2 + u)P~2 du.
Y&n+1

Thus,
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1
/ )" = onra ()" dy =
0

1 £n+1 1 yén
=(p-1) / / (M2 + )P~ 2dudy+// M1 + uw)P™ Qdudy =
0 y&n+1 0 0

1

1
= (p - 1) §”+1 /y(nn—f—Q + yfn+1)p*2 dy + fn /(1 - y)(nn—I—l + yfn)piz dy .
0 0

Using this equality and applying summation by parts in (2.11), we obtain

1

0o 1
Tp=p(p=1)D_ sn|&ni1 /y(%+2 +ybnr1)P 2y + & /(1 — ) (g1 + y&n)?2dy |-
n=1 0

0

As above, we assume that so = 0. We have

y Z Ent1 (v + Yént1)P s + (1 —y) Z En (M1 + y&n)?P %sn =

n=1 n=1
)

=Y Zgn Mn+1 + y&n) Sn 1+ (1 - y) Z gn(nn+1 + yfn)p_25n =
n=1 n=1

- Z gn Sn — YTn (nn-i—l + yén)

Thus,

n=1

. 1
-1) an/ — - yEn (M1 + y€a)" " dy,
0

which is the right equality in (2.10).

Lemma 2.3 is proved.

3. Main results. As above, we use notations (2.1) and (2.8). First we obtain the optimal constant
in the inequality (1.4).

Theorem 3.1. Let x = {x,} be a nonnegative sequence and let 2 < p < oo. Then

HXHcop < ( - 1)||X||CES(p)' (3.1

The constant is optimal.

Proof. We shall use notations introduced in Lemma 2.3. First we observe that by Holder’s
inequality
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1
Sn _
Y = / (; — yén) (M1 + y&n)P 2 dy <
0

1 1/(p—1) 1 (»—2)/(p—1)
Sn p—1 _
< / (f - y£n) dy /(nn+1 + yén )P dy =
0 0

= o/ =1 g(p=2)/(p=1)

Using the second of equalities (2.10), and applying again the Holder inequality, we get

J, = Znn =p(p—1) Z TnYn < p(p — 1) ana}l/(p—l)ﬁép—ﬁ/(p—l) <

I~ 1/(p-1) 0 (r—2)/(p—1)
< (p - 1) <p Z wnan> (p Z $n5n> .
n=1 n=1

We observe that by (2.2)
Z Tnoy < (p—1) Z Tnnlp(n). (3.2)
n=1 n=1

As above, set I, = ZOO 1(sn/n)p. Using (3.2), (2.9), and the first equality in (2.10), we have
n=

Jp < (p — l)p’I;/(p—l)ngp—Z)/(p_l).

From here, J, < (p — 1)PI,,, which yields (3.1). It follows immediately from Lemma 2.2 that the
constant in (3.1) is the best possible.

Remark 3.1. 1t is clear that inequality (3.2) is strict except the case when x, = 0 for all n € N.
Thus, the equality in (3.1) holds if and only if x = 0.

Applying Lemma 2.3, we obtain also the following result.

Theorem 3.2. Let {x,} be a nonnegative sequence and let 1 < p < 2. Set w,(n) = v,(n)"/P.

Then
e’} 1 n p\ 1/p
E6E5)) -
n=1 k=1

00 0o p\ 1/p
<(p—1)¥ (Z <Z xlpr(k‘)> ) . (3.3)

n=1 k=n

The constant is optimal.
Proof. We keep notations (2.8). Also, we set

n oo
i'n = xnwp(n)7 §n = Zik’ gn = and ﬁn = ng
k=1 k=n
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Since the sequence {v,(n)} is decreasing, we have $, > wy(n)s,. Thus, applying Hélder’s inequa-
lity with the exponent p — 1 € (0, 1], we obtain

1
/ < - yﬁn) 77n+1 + yén)p_zdy Z
0

1/(p-1)

1 1 (»—2)/(p—1)
Sn p—1
> wp(n) / (f - y§n> dy / Nn+1 + y&n p 1dy
0 0

As above, we denote

Further, set

1
Bn = / fni1 +y6n)" " dy.
0

Applying the right equality in (2.10) to the sequence {Z, }, we have

B [e.e] oo

Jp=Y ik =pp—1)) Fnn

n=1 n=1

Using estimate for 7,, obtained above, and applying again Holder’s inequality, we get

jp: p—1) Z;Un%>p —-1) Z 1/(p 1)( Bn )(p—2)/(p—1) >
n=1

00 1/(p—1) 00 . (»—2)/(p—1)
> (- 1) (pzxnanupm)) (@w) |
n=1 n=1

Now we apply the left equality in (2.10) to {Z,,} and equality (2.9) to {z,}. This gives that

Jp > (p— 1)1V =D jle=2/ -1

where

SICH

n=1
The latter inequality implies (3.3).
Let now x&V {x } be the sequence defined in Lemma 2.2. By (2.6),
li HX(N) Hces(p) b
im = .
N—oo In N p—1
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Further, set ") = x&N)wp(n) and x(V) = {:%SV) }. 1t easily follows from (2.5) and (2.7) that
lim Hi(N) Hcop(p) _ p
N—oo  InN (p—1)t/p°

It shows that the constant in (3.3) cannot be improved.

Theorem 3.2 is proved.

Remark 3.2. As we have mentioned above, we do not know the value of the best constant A,
in (1.3). By Lemma 2.2,

Ay > ——. (3.4)
On the other hand, we have

sn= > kO —mks1) <D m 3.5)

and by Hardy’s inequality
00 5 \P 1/p oo 1 n P\ 1/p 0 1/p
all < = <y P
(E6)) (E65)) = (Se)
n=1 n=1 k=1 n=1

It follows from (3.4) and (3.6) that

Thus,

;1_>ml(p —-1)A, =1. (3.7)

Clearly, estimate (3.6) is too rough if p — 2. Indeed, by (1.1), the best constant Ay = ((2) =
=72/6 < 2.

Another upper bound for A, can be derived from Theorem 3.2. Since v,(n) decreases (see
Lemma 2.1), it follows from (3.3) that for 1 < p < 2

L /S \P 1 ©
z:: <z) Spoipt ;vp(n)nﬁ- (3.8)
Further, by (2.2), we have
(s . D)
;(n) 3(]9_1)]31;775, I<p<2 (3.9)

For p = 2 this inequality coincides with (1.1). Furthermore, if flp =(¢(p)"P(p—1)~Y" | then

which agrees with (3.7). However, for 1 < p < 2 the constant in (3.9) is not optimal. It can be easily
shown, using (3.8) and (3.5).
Finally, concerning the best constant A, in (1.3), we can only state that it satisfies the inequalities

I S | ()

p=17= """ (p-"
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