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ON ONE ESTIMATE OF DIVIDED DIFFERENCES AND ITS APPLICATIONS *
PO OJIHY OLIHKY JJIA NOAIIEHUX PI3HULIb TA Ii 3BACTOCYBAHHSA

We give an estimate of the general divided differences [zo,. .., Zm; f], Where some points z; are allowed to coalesce (in
this case, f is assumed to be sufficiently smooth). This estimate is then applied to significantly strengthen the celebrated
Whitney and Marchaud inequalities and their generalization to the Hermite interpolation.

For example, one of the numerous corollaries of this estimate is the fact that, given a function f € C (T)(I ) and
aset Z = {z;}}_, such that 241 — 2; > A|I| forall 0 < j < p— 1, where I := [20,2,], |I| is the length of
I, and X is a positive number, the Hermite polynomial L(-; f; Z) of degree < ru + p + r satisfying the equality
£<j)(zl,; f;2) = f(j)(zl,) forall 0 < v < pand 0 < 5 < r approximates f so that, for all x € I,

2|1
(r)
: r wm—r (£, 1)
(@) — Lx: £: 2)| < C (dist (z, 2))"+ om0 g,
dist (z,2)
where m := (r+ 1)(p+ 1), C = C(m, \) and dist (z, Z) := ming<;<, |z — z;].
HagezneHo OLiHKY y3aralbHEHOI IOIUICHOT PI3HHULI [Zo,...,Tm; f], Ae HesKi 3 TOYOK x; MOXKYyTh 30irarucs (B LbOMY

BUMAJKY f BBaXKAETHCS JOCUTH DIaKOI0). LIf0 OLiHKY MOTIM 3aCTOCOBAHO JUIsl CYTTEBOTO MOCHJICHHS BiZIOMUX HEpPiBHOCTEH
Virni i Mapuny Ta y3araabHeHHs 1X AJIs MOJTiHOMianbHOI iHTeprossinii Epmirta.

Hanpuknazn, OAHUM i3 YUCICHHUX HACIIIKIB Li€l OLIHKY € ToH (akT, 1o s 3ananoi Gpynkuii f € C ™ (I) Ta HaGopy
TodoK Z = {z;}}_, Takux, mo zj41 — z; > A[I| msa Beix 0 < j < p—1, ne I := [20, 2], |[I| — nowxuma I, X —
JesiKe ofaTHe uncio, moninom Epmita L(-; f; Z) crenens < rp + p + r, sxuii 3agosonsnse LY (z,; f;Z) = f9(2,)
it 0 <v<pil0<j<r, Habmmkae f Tak, mio s BCix « € [

2[1]

(@) — L(z; £: 2)] < C (dist (z, 7)) /

dist (z,2)

w'mf*"‘(f(r)a ta I)

e dt,

gem = (r+1)(p+1), C=C(m,A) idist(z,Z) := mino<j<, |z — 2.

Introduction. V. K. Dzyadyk had a significant impact on the theory of extension of functions, and
we start this note with recalling three of his most significant results (in our opinion) in this direction.

First, in 1956 (see [4]), he solved a problem posed by S. M. Nikolskii on extending a function
f € Lipy(a,p), 0 < <1, p>1, on a finite interval [a, b], to a function F' € Lip,,, (a,p) on the
whole real line, i.e., F|j, 5 = f.

Then, in 1958 (see [5] or [6, p. 171, 172]), he showed that if f € C]0,1] then this function
may be extended to a function F' € C[—1,1] with a controlled second modulus of smoothness on
[—1,1], i.e., F'[jp,1;) = f, and the second moduli of smoothness of f and F' satisfy wa(F)d;[~1,1]) <
< 5wa(f,0;[0,1]), 0 < & < 1. (This result was independently proved by Frey [9] the same year.)

In this note, we mostly deal with results related to Dzyadyk’s third result which we will now
describe.
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ON ONE ESTIMATE OF DIVIDED DIFFERENCES AND ITS APPLICATIONS 231

Given a function f € Cla,b] and a < 29 < x1 < w2 < b, the second divided difference
[0, 21, x2; f] can be estimated as follows (see, e.g., [16, p. 176] and [8, p. 237]):

To—XT0
t
|[$07$17$23f”§x2fx0 / WQ(té’)dt, (1.1)
h

where ¢ = const < 18, h := min{zy — xg,z2 — 1 }.

Now, let wo be an arbitrary function of the second modulus of smoothness type, i.e., we € C[0, 00
is nondecreasing and such that wo(0) = 0 and ] 2w (1) < 4t5 %wa(ta), 0 < to < t.

In 1983, Dzyadyk and Shevchuk [7] proved that if f, defined on an arbitrary set £/ C R, satisfies
(1.1) with wo(t) instead of wy(f, ) for each triple of points zg, z1, 22 € F satisfying xo < x1 < z2,
then f may be extended from FE to a function F' € C'(R) such that wy(F,t;R) < cws(t). In other
words, (1.1) with wy(t) instead of wo(f,t) is necessary and sufficient for a function f to be the
trace, on the set £ C R, of a function F' € C'(R) satisfying wa(F,t;R) < cwa(t). This result was
independently proved by Brudnyi and Shvartsman [2] in 1982 (see also Jonsson [14] for ws(t) = t).

V. K. Dzyadyk posed the question to describe such traces for functions of the kth modulus of
smoothness type with & > 2. He conjectured that an analog of (1.1) must be a corollary of Whitney
and Marchaud inequalities. In 1984, this conjecture was confirmed by Shevchuk in [19], and a
corresponding (exact) analog of (1.1) for £ > 2 was found (see (2.7) below with r = 0). Earlier, the
case w(t) = t*~! was proved by Jonsson whose paper [14] was submitted in 1981, revised in 1983

and published in 1985.

So what happens when we have differentiable functions? In 1934, Whitney [23] described the
traces of r times continuously differentiable functions F': R — R on arbitrary closed sets £ C R:
this trace consists of all functions f: E — R whose rth differences converge on E (see [24] for
the definition). In 1975, de Boor [1] described the traces of functions F': R — R with bounded rth
derivative on arbitrary sets £ C R of isolated points: this trace consists of all functions whose rth
divided differences are uniformly bounded on E (in 1965, Subbotin [22] obtained exact constants in
the case when sets F consist of equidistant points).

Finally, given an arbitrary set £ C R, the necessary and sufficient condition for a function f to
be a trace (on E) of a function F € C")(R) with a prescribed kth modulus of continuity of the
rth derivative was obtained by Shevchuk in 1984 in [19] (see also Theorems 11.1 and 12.3 in [20],
Theorems 3.2 and 4.3 in Chapter 4 of [8], and [21], where a linear extension operator was given).

In fact, this necessary and sufficient condition is an analog of (1.1) for the kth modulus of
continuity of the rth derivative of f which is inequality (2.7) in Theorem 2.1 below. However, the
original proof of Theorem 2.1 was distributed among several publications (see [10, 18, 19] as well as
[20] and [8]), and there was an unfortunate misprint in the formulation of Theorem 6.4 in Section 3
of [8]: in (3.6.36), “k” was written instead of “m”. Hence, the main purpose of this note is to
properly formulate this theorem (Theorem 2.1), provide its complete self-contained proof and discuss
several important corollaries/applications that have been inadvertently overlooked in the past.
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232 K. A. KOPOTUN, D. LEVIATAN, I. A. SHEVCHUK

2. Definitions, notations and the main result. For f € C[a,b] and any k € N, set

Zfzo(—ni <’;> fl@+ (k)2 —iju), =+ (k/2)u € [a,b],

0, otherwise,

Ay (f 3 (a,b]) =

and denote by

wi(f, 8 [a,0]) == sup [AG(S, 5 [a, b))l cpas 2.1)
O<u<t
the kth modulus of smoothness of f on [a, b].
Now, we recall the definition of Lagrange — Hermite divided differences (see, e.g., [3, p. 118]). Let
X = {z; }2”:0 be a collection of m + 1 points with possible repetitions. For each j, the multiplicity
m; of x; is the number of z; such that x; = x;, and let [; be the number of x; = z; with ¢ < j.
We say that a point z; is a simple knot if its multiplicity is 1. Suppose that a real valued function f
is defined at all points in X and, moreover, for each z; € X, f (lﬂ'*l)(xj) is defined as well (i.e., f
has m; — 1 derivatives at each point that has multiplicity m;).

Denote
[zo; f] := f(@0),
the divided difference of f of order O at the point z.
Definition 2.1. Let m € N. If x¢g = ... = x,, then we denote

B f(m) (z0)

[x(]a"')'rm;f]: xOv"'axO;f] = Y
m:
m—+1

Otherwise, xo # xj«, for some number j*, and we denote

1
[xﬂv"'awm;f] = qub,xm?f] - [$07'"7$j*717xj*+17'"axm;.ﬂ)v
J

the divided (Lagrange— Hermite) difference of f of order m at the knots X = {x; };-”:0.
Note that [zg, ..., Zy; f] is symmetric in zg, ..., z,, (i.e., it does not depend on how the points
from X are numbered), and recall that

Ly (x; f) i= Ly (5 fy 20, . .., xm) := f(20) + Z[a:o, conxg flle—xo) . (@ —xim1)  (2.2)

m
J=1

is the (Hermite) polynomial of degree < m that satisfies
LS D@ f) = fGD(;), forall 0<j<m. (2.3)

Hence, in particular, if x;, is a simple knot, then we can write
f(@5.) = Ln—1(zj; fi@o, - -+ T 1, Tj 41, - - ,xm).

m
Iy s oo =20

From now on, for convenience, we assume that all interpolation points are numbered from left to
right, i.e., the set of interpolation points X = {xj}gnzo is such that zg < 1 < ... < x,,,. We also
assume that the maximum multiplicity of each point is  + 1 with r € Ny, so that

[0y ooy T f] = (2.4)
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ON ONE ESTIMATE OF DIVIDED DIFFERENCES AND ITS APPLICATIONS 233

Tj < Tjyry1, forall 0<j<m-—r—1 (2.5)
Also, let
Qs ={(p,q) |0<p,g<mandqg—p>r+1} =
={(pg) |0<p<m—r—Tlandp+r+1<qg<m}, (2.6)

and note that Q,, , = @ if m <.
Now, for all (p,q) € Qy,,r, put

d(p,q) == d(p, ¢; X) = min{xg1 — zp, g — Tp-1},
where x_1 := xg — (Tm — x0) and Tpy41 := T + (T — xo). Note, in particular, that
d:=d(X):=d0,m; X) =2(zm — x0).

Everywhere below, ® is the set of nondecreasing functions ¢ € C|0, 00| satisfying ¢(0) = 0.
We also denote

d(p,q9)
/ P (u) du
S , (pg) € Qs

Hz:ol(xq ) HZqH(Ii —1p)

AP?QJ‘("'BO) vy Iy (10) =

and

Ar(zo, ..oy ) 1= (p,qr?eagm,r Apgr(To,. .o Tm; 0).

m

, -1
Here, we use tl.le usual con\fentlon th.at Hi:O = 1 and H
The following theorem is the main result of this paper.
Theorem 2.1. Let r € Ng and m € N be such that m > r + 1, and suppose that a set
X ={z;}L, is such that xo < x1 < ... < @y, and (2.5) is satisfied. If f € CM)[xg, ), then

i=m+1

|[$0,7$m,f]| SCAT($O,...7LL’m;Wk)7 (27)

where k :=m — 7 and wy,(t) == w(f"), t; [0, T,m]), and the constant c depends only on m.

3. Auxiliary lemmas. Throughout this section, we assume that »r € Ng, m € N, m > r + 1,
the set X = {x;}7 is such that zg < 21 < ... <z, and (2.5) is satisfied, and that (p, q) € Q.
For convenience, we also denote k& :=m — r.

We first show that Theorem 2.1 is valid in the case m =r + 1 (i.e.,, k = 1).

Lemma 3.1. Theorem 2.1 holds if m = r + 1.

Proof. 1f m =r + 1, then Q,,, = {(0,7+ 1)}, and so

d
AT('I;OJ <y Ty SO) = AO,T‘-{-L’I‘(an <o T SO) = / "U,iQ()O(U)d'U,
d/2

Hence, since xg # x,, by assumption (2.5), (2.7) follows from the identity
21, e f] = o, @i ] F(01) = £7(62)

[x(]a""l'm;f]: Ton — T0 = T'd/2 )
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234 K. A. KOPOTUN, D. LEVIATAN, I. A. SHEVCHUK

where 01 € (x1,x,41) and 03 € (x0, x,), and the estimate

(0 — )6 wi(d/2 dwu
| (1)d (2)\S 1(d/)§/ L(Q)

dt = A (20, ..oy Ty w1)-
/2
Lemma 3.1 is proved.

For k > 2, we need the following lemma.
Lemma 3.2. Let (p,q) € Qmr be such that q —p+2 <m. If ¢ € ® and w € ® are such that

d
o(t) < th1 /ukw(u)du, t e (0,d/2], 3.1
t
then
Apgr(zo,. .. zm;p) < 2k2Ar(m0, ey Ty W). (3.2)

Proof. Let (p,q) € Qm, such that ¢ — p + 2 < m be fixed, and consider the collection
{(Pv, @)} which we define as follows. Let (po, qo) := (p, ¢) and, for v > 1,

(plffl - 1a qvfl)v if Lg,_1 — Tp,_1—1 < Lg,_14+1 — Tp,_1>
(pvy qv) == .
(Pv—1,4,-1 + 1), otherwise.
It is clear that g, — p, = q,—1 — p»—1 + 1, and so
Qv —Pv=q—p+v, (3.3)
and one can easily check (for example, by induction) that, for all 1 <v < m — q + p,
0<p<pr1<@-1<q <m.

Hence, in particular,
(pquer’ mequp) = (0,m).

In the rest of this proof, we use the notation
dy == d(p, @), 0<v<m—q+p.
Also, observe that
dy > dy—1 =2, —Tp,, 1<v<m+q—p,

and
dqu+p71 =Ty — T — d/2
We now show that, forall 1 <v <m — q+ p,
du—l

pr—1—1 m
HZZO (mQV—l - '1:74) Hi:qyfl-‘rl(a’:i - :Epu—l)
2k
S pv—1 m :
Hz’:() (zq, — i) Hi:qﬁ_l@i — Tp,)

Indeed, if zq, | —2p, -1 < Zg, 41 — Tp,_,, then (P, @) = (Po—1 — L, qu—1), dp—1 = x¢,_, —

<

(3.4)
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ON ONE ESTIMATE OF DIVIDED DIFFERENCES AND ITS APPLICATIONS 235

—xp, -1 and, for g,_1 +1 < j <m,
aj‘j —

xpl/ = (ZB] - xf]ufl) + (quV71 - xpuflfl) <

S (x] - ':Upl,,l) + (x(qul‘i’l - :L‘pufl) S 2([E] - l'py—l)ﬂ
whence
m m
H (5 — xp,_,) > 217 H (i — xp,),
i:qufl“l’l

i=qy+1
that yields (3.4) because m — q,—1 < m —q < k.

Similarly, if Lgy_1 = Tpy_1—1 > Lgy_1+1 — Tp,_y; then (pV7QV) = (pu—lqu—l + 1)7 dy—1 =
=g, ,+1 — Tp,_,, and, for 0 < j <p,_1 — 1,
x‘]u - ‘/'U] = (xQU—1+1 - xpu—l) + (xpu—l - x]) <

< (xqu—l - xpu—1*1) + ($QV—1 - SU]') < Q(xQV—l - mj)v

and whence
Pv—1— 1

pr—1
H (Tg,_y — ;) > 2771 H (wq, — xi),
i=0 i=0

that also yields (3.4) because p,—1 < p < k.
Inequality (3.4) implies that, for all 1 < v <m — g + p,

v—1
— I, < — 2 . (3.5)
Hf:o (g — i) quﬂ(@"i — Tp) pr (wq, — ;) quy+1($z’ — Zp,)

1=0

It is clear that d(p, q) < x,,, — 2o = d/2, and so condition (3.1) implies that

d(p,q) d(p,q) d
/ Pt p(w)du < / uP a2 /vkw(v)dv du.
Tq—Tp Tq—Tp u
Using integration by parts we write
d(p,q) d(p,q)
(m—q+p—1) / P () du — / Py (w)du <
Tq—Tp Tq—Tp
m—q-+p—1 d (’LL) m—q+p—1 I ¥ w u)
<d (p,q) & du=d (p,q) —F s
d(p.q) v=d,
m—q+pr—1 dy
<2 Z Hdi uPTTTI I G (u) du
v=1 =0
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236 K. A. KOPOTUN, D. LEVIATAN, I. A. SHEVCHUK

The last estimate is obvious for 1 <v <m — g+ p — 1 and, for u = m — g + p, it follows from

m—q+p—1
m—g+p—1
dy dm-gp<2 [ di
=0

which is valid because

m—q+p—2
Ayt < H di and dym—q—p =d(0,m) =d =2dpm—_gip—1-
=0

Finally, taking into account (3.3), (3.5) and recalling that d, 1 = x4, —xp,, 1 <v <m—q+p, we
obtain

(m —q+p-— I)Ap,q,r(x()v -y T 90) <

m—q+p
<Apgr(zo,...,Tmiw)+2 Z 2% N ao i (X0, -+ s Ty W)

v=1

that implies (3.2).
Lemma 3.2 is proved.
Lemma 3.3. Ifk=m—r>2and ¢ € ® and w € ® are such that

d
o(t) < 151 / wFeo(u)du, t e (0,d/2), (3.6)
t

and o(t) < w(t), t € [d/2,d], then

Ar(zoy oy m—1;0) < c(@m — x0)Ar(T0y - - oy Ty W) (3.7)
and

Ap(z1, .oy @) < (@ — 20) A (0, - oy Ty W), (3.8)

where constants c depend only on k.

Proof. We first note that (3.8) is a consequence of (3.7). Indeed, given X = {z;}", define the
set Y = {y; };2 by letting y; := —2,,—5, 0 < i <m. Then o <1 < ... < Y, Ym—Yo = Tm—To
(and so, in particular, d(Y) = d(X) = d),

d(p,¢;Y) = min{yg+1 — Yp, Yg — Yp—1} = Min{@m—p — Tm—g—1, Tm—p+1 — Tm—g} =
=d(m —q,m —p; X) = d(m —q,m —p),
and it is not difficult to check that, for any ) € ®,
Apgr (o5 Ym; V) = A gm—pr(T0, - -+ T3 )

and
Ap,q,r(?JOv sy Ym—1; ﬂ)) = Am—q—l,m—p—l,r(SUla <oy Tmy; ¢)
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Hence, using the fact that (p,q) € Q. iff (1 — ¢, —p) € Qur, p=m — 1, m, we have

A (zo,...,zpmyw) = max Ay, (20,...,Tmw) =
(p,q)EQm,r

= max A—gm—pr (Y05 - - Ymiw) = Ar (Yo, - - Ymi W)
(m_va_p)EQm,r

and
Ao(x1, ... xm;0) = max A Tlyee o T Q) =
2 m3 ) (P,9)€EQm—1,r par m3 ¢)
= max Am—g1mp-170, - Ym-159) = Ae(Y0, -+ -, Ym—15 9),

B (m_q_lvm_p_l)egmflm
and so (3.8) follows from (3.7) applied to the set Y.
We are now ready to prove (3.7). Let (p*, ¢*) € Q—1, be such that
A= Ap*,q*,r(an sy Im—15 (P) = Ar(ﬂf07 vy Im—1; ‘70)7

and denote, for convenience, X,, := {zo, ...,z } and X,,—1 := {z0,...,Tm_1}.
We consider four cases.
Case I: (p*,q¢*) = (0,m — 1).
2h
We put h := x,,,_1 — xo and note that A* = / u_kap(u)du.
h
If h < d/4, then

d d/2 d
2R A < (2h)1Fp(2h) < /u_kw(u)du < /u_kw(u)du—i— /u_kw(u)du <
2h h d/2
d/2 d
< / uwFw(u)du + d / u o (u)du =
h d/2
= (Tm — 20) (Nom—1(Z0, - . - s Tm; W) + 2M0mr (To, - . ., Tmiw)) <
< 3(xm — 20)Ar(zo, - .y T w).
If h > d/4, then
/2 2h 2h
A = /ukgo(u)du—i— /ukgo(u)du < (4/d)" " p(d/2) + / u R p(u)du <
h /2 d/2

d d d
< 4k / u Fo(u)du < 4% / uFw(u)du < 4% | v Flw(u)du =
df2 d/2 d/2

=2. 4k(azm —20)Nom (20, ..oy Tmyw) < 2 4k(xm —z0) A (z0, .., Ty w).
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238 K. A. KOPOTUN, D. LEVIATAN, I. A. SHEVCHUK

Case II: either (i) ¢* #m — 1, or (i) ¢* =m — 1, p* > 0, and x, — Tp= > Tpp—1 — Tp*—1.
In this case, d (p*, ¢*; Xin—1) = d (p*, ¢*; Xon) = Tm—1 — p+—1, and so

N = (2 — p=) Mpr e (@0, o s T 0) < (T — 20) Apr g (Z0s - - -, T ).

Since ¢* — p* + 2 < m, we may apply Lemma 3.2 and obtain (3.7).

Caselll: ¢* =m — 1, p* > 2 and zp, — Tpr < Tpy1 — Tpr—1.

In this case, d (p*, ¢*; Xin—1) = Tm—1 — zp=—1 and d (p*, ¢*; X)) = @y — zp+. Hence, taking
into account that, for 0 < ¢ < p* — 1,

T — Ti = Ty — Tpr + Tpr — T < Ty 1 — Tpr—1 + Tpr — T3 < 2(SUmfl - SCZ'),

we get
Aps m—10(T0s - o, Tm—150) — (T, — Tp=) Apr 10 (T0, - -+, Tims @) =
p*—l Z‘m_l—xp*71
= [l @n—=)" / uP () du <
1=0

Tm —dfp*

P 1 :Em—$p*71
< 217* H («'Em - -1'i)_1(xm _ wp*—l) / Up*+r_m_lg0(u>du —
1=0

Im, —ZEP*

= or (Tm — Tpe—1) MApr e (Tos -, Tn ).

Since m — p* + 2 < m, we may apply Lemma 3.2 to obtain (3.7).
Case 1IV: (p*,q¢*) = (1,m — 1) and =, — 1 < Tp—1 — X0.
In this case, we have

Tm—1—20
1
N=—— urFo(u)du <
Tm—1 — 20
Tm—1—T1
] Tm—1—T0 d
< — / /v_kw(v)dv du <
Im—1 — 20
Tom—1—21 u
d Tm—1—%0
—k 1 1-k
< u tw(u) du + ——— uw(u)du =: Ay + As.
Im—1 — 20
Tm—1—0 Tm—1—T1
Now,
/2 d
A = / uFw(u)du + /u_kw(u)du <
Tm—1—%0 d/2
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ON ONE ESTIMATE OF DIVIDED DIFFERENCES AND ITS APPLICATIONS 239

d/2 d
—k —k—1 _
< / u w(u)du+d/u w(u)du =
Ty—1—20 d/2
= (xm - mO) (AO,m—l,r(xm <oy Ty w) + 2A0,m,r(x07 <oy Tm; W)) <
< 3(xm — 20)Ar (0, - oy Ty W)
and
Tm—T1 Tm—1—x0
1 1
Ay = —— uFw(u)du + ——— / utFw(u)du <
Tm—1 — X0 Tm—1 — X0
Tm—1—2x1 Tm—x1
Tm—1—T0
< (Tm — 1) M =10 (T0s - -, T W) + / ufkw(u)du <
T —T1
T —T0
< (zm — z0) M m—1,(T0, ..., Tm;w) + / u_kw(u)du =
T —T1
= (2 — x0) (A1, (T0, - - -, T3 W) + At (@0, - o oy Zisw)) <
< 2(xp — 20)Ar (o, - .y T w).

Lemma 3.3 is proved.

4. Proof of Theorem 2.1. We use induction on k = m — r. The base case k = 1 is addressed in
Lemma 3.1. Suppose now that k > 2 is given, assume that Theorem 2.1 holds for k¥ — 1 and prove
it for k.

Denote by P;_; the polynomial of best uniform approximation of f{") on [0, ] of degree at
most k — 1, and let g be such that

g(T) — f(f‘) — P, .

Then
Wk(Q(T)7t, [.T()7.’Em]) = (,Uk(f(r),t, [‘T07‘T’m]) = w}{(t)a

and Whitney’s inequality yields

e

< cwp (£, 2 — 30 [0, 2] ) = ew] (m — 20). (4.0

[ac()@m] o

Hence, the well known Marchaud inequality:
if '€ Cla,b] and 1 < ¢ < k, then, forall 0 <t <b—a,

b—a
. . wip(F, u; [a, b)) 1E([70,4
we(F,t; [a,b]) < c(k)t / s, du + b—a) |
t

implies, for 0 < t < z,,, — 2,
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WZ—1(t) = We—1 (g(r),t; [l’o,l’m]) <

R (O (G
B w;. (u wi. (Tm — X0
< ctht k> d kA <
=¢ J uk u+(33m—1‘o)k’1 =
2(xm—0)
f
< b1 / wk(k“) du. 4.2)
u

t
We also note that (4.1) implies, in particular, that, for all ¢ € [z, — o, 2(zm — 0)],
W1 () < ellg™ lizg e < Wi (Tm — o) < cw] (). (43)
We now represent the divided difference in the form
(@m —x0) [0, -+, Zm; [] = (¥m — 20)[T0, .-, Tm; 9] =
= [z1, ., T3 9] — [0, - Tm—139] = Yo, - - - Ym—13 9] — [0, - -, Tm—13 9],
where y; := xj41, 0 < j < m — 1. By the induction hypothesis,
[0, -+, Tm—1;9]| < cAr(20, ..., Zm-1;w]_;)

and
|[y07 o 7ym—1;g]| S CA’I‘ (y07 cee 7ym—1;wz_1) .

Now, taking into account (4.2), (4.3) and homogeneity of A, (zo,. .., zm;1) with respect to 1,
Lemma 3.3 with ¢ := w;‘i_l and w := K w,{ , where K is the maximum of constants ¢ in (4.2) and
(4.3), implies that

A, (aco, .. ,xm_l;wg_l) < (@ — x0)As (:Uo, e xmw,{)
and
A, (y07 ) ym—l§wz_1) = A, (xla ce 7wm§wz_1) < C(wm - wO)Ar (.%'(), ce 7xm;w]]:> )

which yields (2.7).

Theorem 2.1 is proved.

5. Applications. Throughout this section, the set X = {z; };”:})1 is assumed to be such that
xo < w1 < ... <21 (unless stated otherwise), and denote I := [zg, Zym—1] and |I| = 21 — x0.
Also, all constants written in the form C(u1, p2, . ..) may depend only on parameters pp, po, . .. and
not on anything else.

We first recall that the classical Whitney interpolation inequality can be written in the following
form.

Theorem 5.1 (Whitney inequality, [25]). Let r € Ny and m € N be such that m > max{r +
+ 1,2}, and suppose that a set X = {x; };”:_01 is such that

Tjp1 —x; > M|, forall 0<j<m-—2, 5.1
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where 0 < X\ < 1. If f € C")(I), then
f(2) = Lin—1(@; fi @0, . - ., Zm—1)| < C(m, N ["wner (f7, |I], 1), w €1,

where Ly,—1(-; f; 20, ..., Tm—1) is the (Lagrange) polynomial of degree < m — 1 interpolating f at
the points in X.

We emphasize that condition (5.1) implies that the points in the set X in the above theorem
are assumed to be sufficiently separated from one another. A natural question is what happens if
condition (5.1) is not satisfied and, moreover, if some of the points in X are allowed to coalesce. In
that case, Ly,—1(-; f; o, .., Tm—1) is the Hermite polynomial whose derivatives interpolate corre-
sponding derivatives of f at points that have multiplicities more than 1, and Theorem 5.1 provides
no information on its error of approximation of f.

It turns out that one can use Theorem 2.1 to provide an answer to this question and significantly
strengthen Theorem 5.1. As far as we know the formulation of the following theorem (which is itself
a corollary of a more general Theorem 5.3 below) is new and has not appeared anywhere in the
literature.

Theorem 5.2. Let r € Ng and m € N be such that m > r + 2, and suppose that a set
X = {z; };-”261 is such that

Tjpri1 —2; > M|, forall 0<j<m—r—2, (5.2)
where 0 < X\ < 1. If f € C")(I), then
‘f(ﬂf)*mel(l';f;xo,...,ﬁﬂmfl)’ SC(ma)\)|l|rwm77”(f(r)’|I|’I)a 336.[,

where Ly,—1(; f;xo, ..., Tm—1) is the Hermite polynomial defined in (2.2) and (2.3).
Theorem 5.2 is an immediate corollary of the following more general theorem. Before we state

it, we need to introduce the following notation. Given X = {z; ?”‘;01 with 2o < 21 < ... < Zy—1
and z € [zg, £pm—1], we renumber all points x;’s so that their distance from « is nondecreasing. In
other words, let o = (0, ...,0m,—_1) be a permutation of (0,...,m — 1) such that

|t — 26, 4| < |z —24,|, forall 1<v<m-—1. (5.3)

Note that this permutation o depends on x and is not unique if there are at least two points from X
which are equidistant from x. Denote also

T
D2, X) =[]l —20,l, 0<r<m-—1. (5.4)
v=0

Theorem 5.3. Let r € Ng and m € N be such that m > r + 2, and suppose that a set
X = {z; };’ZOI is such that

Tjpri1 —2; > M|, forall 0<j<m—r—2, (5.5)
where 0 < X\ < 1. If f € C")(I), then, for each x € I,
’f(x) - Lm_l(l';f;fl?o, o ,l’m_]_)‘ S
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2|1

wm—r(f(r)a t, I)

< C(m,\)Dy(z, X) 2

‘xfxo"r‘

dt, (5.6)

where D, (x, X) is defined in (5.4), and Ly,—1(-; f;x0,...,Tm—1) is the Hermite polynomial defined
in (2.2) and (2.3).

Before proving Theorem 5.3 we state another corollary. First, if k € N and w(t) := wy(f"),t;I),
then ¢, "w(t2) < 28t *w(t1), for 0 < t; < to. Hence, denoting \, := |I|{/|z — z,, |/|I] and noting
that |z — z,,| < Az <|I|, we have, for k > 2,

2[1] A, 2l
/ Wt(;) dt = / - / Wt(;) dt <
|[z2—20, | lz—2 0, | Az
00 2|1
<w(Ag) / t72dt + 2P0 Fw(),) / th=2dt =
e —o, | 0

_ W(/\:c) - 22k71 '
|z — 24, k-1
Therefore, we immediately get the following consequence of Theorem 5.3.
Corollary 5.1. Let r € Ng and m € N be such that m > r + 2, and suppose that a set

X = {z; ;”:_01 is such that condition (5.5) is satisfied.
If f € CUN(I), then, for each x € I,

|£(x) = Lin—1(@; f3 20, -, 2m—1)| < C(m, \)Dy_1 (2, X)wimr (f"), X, I) <
< C(m, \)Dr1 (@, X)wm—r (f7, 1], 1), (5.7)

where Ay = |I|(|z — xar\/]ﬂ)l/(m_r).

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. We note that all constants C' below may depend only on m and A and
are different even if they appear in the same line. It is clear that we can assume that z is different
from all z;’s. Sowe let 1 <i <m —1 and x € (z;_1, ;) be fixed, and denote

Zj, if OSJSZ—l,
Yj =, if j =4,
Tj—1, if 1+1<75<m,

Y = {y;}jlo, dY) = 2(ym — v0) = 2(zm—1 — x0) = 2|I|, k := m —r, and wg(t) :=

= W (f(r)at [y(bym]) = Wk (f(r)vul) .

Condition (5.5) implies that y; < yjy,41, forall 0 < 7 < m —r — 1, and so we can use
Theorem 2.1 to estimate |[yo,...,Ym; f]|. Now, identity (2.4) with j, := i that yields y;, = «
implies

|f(55) - Lm—l(l";f;xo, - ,xm_1)| =
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=|f(x) = Lin—1(z; f590, -+, Yie1, Yit1s - - -, Ym)| =

m

= yo,--um; Il J] 1o —wsil <
j=0,j#i
m—1
< Ao,y ymiwe) ] 1o = 2] < eDp, X Ao, - Y wr).- (5.8)
=0

We also note that it is possible to show that H::Ol |z —x;] > (\/2)" 1D, (2, X)|1|F71, and so
the above estimate cannot be improved.
In order to estimate A,, we suppose that (p,q) € Q. and estimate A, . Since ¢ —p > r+1,
we have
Yg = Yi =Yg — Yp—1 = Yptr+1 — Yp—1 Z A[I], for 0<i<p-—1,

and
Yi—Up =Ygl — Yp = Ypr+2 — Yp = AlI|, for g+1<i<m.
Hence,
21|
Apgr (Y05 - - s Ymiwr) < C|I|T7™P / uP Ty (u) du. (5.9)
Yq—Yp

We consider the two cases.
Casel: g>p+r+2,orq=p+r+1and z & [yp, yql-
It is clear that y, — y, > A|I|, and so it follows from (5.9) that

2|1]
- — Wrlu
Apoar (W0, - - - ymiwi) < CII| Fwy (1)) < C|II* k/ 2(2)du-
i

Case1l: g =p+r+1 and = € [yp, y,).

Ifz =y, thenp=1i,¢g=i+r+1,and y; — yp = Titr — = > [T — T4, |-

Ifx=ygtheng=i,p=i—r—1landy,—yp =2 —Tir_1 > |T — o]

If z € (yp,yq), then y, — yp = Tp4r — xp. Since it is impossible that |z — x4, | > max{x —
— Zp, Tp4r — 2}, for this would imply that {p,...,p+r} C {o0,...,0r—1} which cannot happen
since these sets have cardinalities r 4+ 1 and r, respectively, we conclude that |z — z,, | < max{x —
— Zp, Tpyr — T} < Zpip — xp. Thus, in this case, (5.9) implies that

21|
_ wi(u)
APvQ,T(yOa”'uym;wk) S C'|I|1 F / U2 du.
|$_IUT‘
Hence,
2/I|
_ welu
Ar(yos - s ymswr) < CH|TH / u(2 i
|£E*.’170-7,|
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which together with (5.8) implies (5.6).

Theorem 5.3 is proved.

We state one more corollary to illustrate the power of Theorem 5.3. Suppose that Z = {zj};fzo
with 2o < 21 < ... < z,, and let X = {z; ;7:01 with m := (r + 1)(p + 1) be such that
Ty(r41)45 = 2, forall 0 <v < pand 0 < j <. In other words,

Now, given f € C(") (20, 2], let L(x; f; Z) := Lyp—1(z, f;0,...,2Tm—1) be the Hermite polyno-
mial of degree < m — 1 = ru + p + r satisfying

LO(z: f:2) = f9(z,), forall 0<v<p and 0<j<r (5.10)

Also,
dist(z,Z) := min |z —z;|, z€R.
0<j<u

Corollary 5.2. Let v € Ny and p € N, and suppose that a set Z = {z; }?:o is such that
Zjt1 —2; 2 A|I|, forall 0<j<pu-—1,
where 0 < X\ < 1, T := [20,2,) and |I| := 2, — 2. If f € CU)(I), then, for each x € I,

21|
wm*T(f(T)v ta I)

2 dt <

|f(z) = L(z; f; Z)| < C (dist(z, 2))"

dist(z,2)

< C (dist(z, 2))" wm—r (£, 1] (dist(w, 2)/|1) V) 1) <

< C (dist(z, 2))" wmr (fD, 1], 1),

where m := (r + 1)(u + 1), C = C(m,\) and the polynomial L(-; f;Z) of degree < m — 1
satisfies (5.10).

As a final note, we remark that some of the results that appeared in the literature follow from the
results in this note. For example, (i) the main theorem in [12] immediately follows from Corollary 5.2
with 4 = 1, 29 = —1 and z; = 1, (ii) Corollary 5.1 is much stronger than the main theorem in
[13], (iii) a particular case in Lemmas 8 and 9 of [15] for £k = 0 follows from Corollary 5.1,
(iv) several propositions in the unconstrained case in [11] follow from Corollary 5.1, (v) Lemma 3.3
and Corollaries 3.4—-3.6 of [17] follow from Corollary 5.1 and (vi) the proof of Lemma 3.1 of [16]
may be simplified if Corollary 5.1 is used.
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