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TEOPEMMU €IUHOCTI 3 OBPI3BAHUMH KPATHOCTAMMU
JJIA MEPOMOP®HUX BIIOBPA’KEHD 3A KIJIBKOMA 3MIHHUMH
JIJIS1 HEBEJIMKOI KIVIBKOCTI OB’EKTIB

The purpose of our paper is twofold. Our first aim is to prove a uniqueness theorem for meromorphic mappings of C™ into
PN (C) sharing 2N + 2 hyperplanes in the general position with truncated multiplicities, where all common zeros with
multiplicities more than a certain number do not need to be counted. Second, we consider the case of mappings sharing
less than 2N + 2 hyperplanes. These results are improvements of some recent results.

PoGora Mae 1Bi ocHOBHI MeTH. [To-1epIle, 10BEIEHO TEOPEMY €AMHOCTI U1 MepoMopdHuX BinoGpaxens 3 C™ B PV (C), mo
noaisiroth 2N + 2 TinepIuIonMHH 3arajibHOr0 HOJIOKEHH 3 00pi3aHMMH KPaTHOCTSIMH, A€ BC CIIUJIbHI HYJI 3 KPaTHOCTSIMH,
IO TTEPEBHIIYIOTH JEeSKe YHCII0, MOKHA HEe BpaxoByBarH. [1o-apyre, po3nIsSHYTO BUIIANOK, KOJIH BiOOpaXXEeHHS HOIUISIOTH
MeHme, Hbk 2N + 2 rineprutomuad. OTpUMaHi pe3ysbTaTi MOKpPaIlyioTh AeSKi BiIOMi HOBI pe3yabTaTH.

1. Introduction. In 1926, R. Nevanlinna showed that two distinct nonconstant meromorphic func-
tions f and g on the complex plane C cannot have the same inverse images for five distinct values.
This result is usually called the Nevanlinna’s five values theorem, which is the first theorem on the
uniqueness problem of meromorphic mappings. After that, the uniqueness problems with truncated
multiplicities of meromorphic mappings of C" into the complex projective space PV (C) sharing a
finite set of hyperplanes in PV(C) has been studied intensively by many authors such as H. Fujimoto
[5], L. Smiley [11], S. Ji [7], Z.-H. Tu [16], G. Dethloff, T. V. Tan [3], D. D. Thai, S. D. Quang
[10, 14], Z. Chen, Q. Yan [2] and others.

To state some of them, first of all we recall the following.

(a) Let f be a nonconstant meromorphic mapping of C" into PV (C) with a reduced representa-
tion f = (fo: ...: fn). Let H be a hyperplane in PV (C) given by H = {aowo+...+aywy}. We
set (f,H) = Zi:o a; fi. Then we can define the corresponding divisor v 7y which is rephrased as
the intersection multiplicity of the image of f and H at f(z). Let k be a positive integer or k = oco.
For every z € C", we set

0 if vy (2) >k,

V(s,m),<k(2) = _
vism)(2) if vy (z) <k,

and

" 0 if v (z) <k,
V(f,H),>k\Z) = ,
V(f,H)(Z) if V(f,H)(Z) > k.
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Take a meromorphic mapping f of C" into PV (C) which is linearly nondegenerate over C, a
positive integer d, a positive integer k£ or k = oo and ¢ hyperplanes Hq, ..., H, in PN (C) located
in general position with

dim{ZG(Cn:V(f’Hi) ()>O and V(fH)<k >0}<n—2 1§Z<]Sq,

and consider the set F(f, {H;}]_;,
— PN (C) satisfying the conditions

k,d) of all linearly nondegenerate meromorphic maps g: C* —

(@) min (v(f ;) <k, d) = min (Vg ) <k, d), 1 < j <gq,

(b) f(z) =g(z) on ;1.:1{2 € C": v(smy),<k(2) > 0}.

Denote by § S the cardinality of the set S.

In 1983, L. Smiley [11] proved the following, which is usually called the unicity theorem for
meromorphic mapping sharing few hyperplanes regardless of multiplicity.

Theorem A [11]. If ¢ > 3N + 2, then §F(f,{H;}!_,,00,1) = 1.

In 2006, D. D. Thai and S. D. Quang [14] improved slightly the result of Smiley for the case of
N > 2 to the following.

Theorem B [14]. If N > 2, then $F(f, {H;}}N"" 00,1) = 1.

In 2009, Z. Chen and Q. Yan [2] showed that the above unicity theorems are still valid for the
case of meromorphic mapping sharing 2N + 3 hyperplanes. They proved the following theorem.

Theorem C [2]. #F(f, {H;}}N 00,1) = 1.

Recently, S. D. Quang [10] improved the above result of Chen— Yan by omitting all zeros with
multiplicities larger than a certain number. He proved the following theorem.
N(4N? + 11N +4)
3N + 2
Then a natural question arise here: Are there any unicity theorems with truncated multiplicities
in the case where ¢ < 2N + 27

Theorem D [10]. If k > — 1, then ¢ F(f, {H;}}NP3 k1) = 1.

This question is first considered in [10] by S. D. Quang. He gave the following theorem.

Theorem E [10]. Let f1 and fo be two linearly nondegenerate meromorphic mappings of C"
into PN(C), N > 2, and let Hy,..., Hyno be hyperplanes in PN (C) located in general position
such that

dim {Z S c": V(fl,Hi)(Z) >0 and V(f1,Hj)(Z) > 0} <n-— 2
forevery 1 <1 < j < 2N + 2. Assume that the following conditions are satisfied:

(a) mln{z/ FL,H;) SN 1} = mm{y fa,H}), <N 1} and mm{l/ FLLH) 2N 1} = mm{y o H;), >N 1},
1<j<2N+2,

(b) fi(2) = fa(2) on UL {2 € "2 g, a1,)(2) > 0}
Then f1 = fo.
However, we see that in the above theorem all zeros of the functions (f, H;)’s are counted.

In the first part of this paper, we will improve Theorem E by omitting the zeros with multiplicity
larger than a certain number k. Namely, we will prove the following theorem.
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Theorem 1.1. Let fy and fo be two linearly nondegenerate meromorphic mappings of C" into
PN(C), N > 2, and let Hy, ..., Hyn o be hyperplanes in PN (C) located in general position such
that

dim {z € C": vy, ) <k(2) >0 and V(f1,H;),<k(2) > 0} <n-—2

forevery 1 <i < j < 2N + 2, where k be a positive integer such that

2N +2
—2)m(N? —1)+2N —1 wi = :
k> 6(m — 2)m( )+ with m <N—i—1>
Assume that the following conditions are satisfied.:
@ min{v(p me)en: 1t = min{vg ey 1 and min{ygg ) on(2), 1) =

= min{v(s, u;),>n(2), 1} for all z € Supp (v(y, m,),<k) Y SUpp (v(f, 1;),<k)s 1 < J < 2N + 2,

(0) f1(2) = fa(z) on U2\ {= € C": vy ) <i(2) > 0}

Then f1 = fo.

We would like to emphasize that our paper is a apart of the doctoral thesis of the first author at
Hanoi National University of Education with some slight improvements. Recently, motivated by our
method, H. Z. Cao and T. B. Cao [6] (Theorem 1.9) have proved a result similar to Theorem 1.1,
where the condition “z € Supp (v(4, m,),<x) U Supp (I/(thj)ék)” is replaced by “y(fl,Hj)(z) =
= V(f,m;)(2)(mod T)” with a large enough positive integer 7. The proof of Theorem 1.1 is
presented in Section 3.

(b) In the last part of this paper, we will consider the uniqueness problem for the case meromor-
phic mappings sharing less than 2/N 4 2 hyperplanes. In fact, we will prove a uniqueness theorem
for the case where the mappings share ¢ hyperplanes with N +3 < ¢ < 2N + 2. To state our results,
we give the following.

Take a meromorphic mapping f of C" into PV (C) which is linearly nondegenerate over C, a
positive integer d, a positive integer k or k = +o0 and ¢ hyperplanes H,..., H; in PN(C) located
in general position with

dim {z € C": v(s,m),<k(2) >0 and vip ) <p(2) > 0}<n-2, 1<i<j<q.

With the above notations, we have the following definition.

Definition 1.1. We denote by G(f, {Hj}g‘:p k,d) the set of all linearly nondegenerate mero-
morphic maps g: C* — PN (C) satisfying the conditions:

(@) min{v(s ) <k, df = min{vg ) <, d}, 1< j < g-

(b) Let f = (fo:...: fn) and g = (go : ... : gn) be reduced representations of [ and g,
respectively. Then, for each 0 < j < N and for each w € | J_{z € C": v(f g,y <4(2) > 0}, the
Jfollowing two conditions are satisfied:

(i) if fj(w) =0, then gj(w) =0,

(i) if fj(w)gj(w) # 0, then D (;}) (w) =D~ <gl> (w) for each n-tuple a = (a1, ..., an) of

J 9j
o ol
nonnegative integers with |a| = a1+. ..+ay, < d and for each i # j, where D* = —————.
0%z ...0%%z,
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Remark that the condition (b) does not depend on the choice of reduced representations.

For each real number z, by [2] we denote the largest integer which does not exceed 2. We will
prove the following, which is the last purpose of this paper.

Theorem 1.2. Let fi and fo be two meromorphic mappings in G ( fAHY d), where
d,k,q, g > N + 2, are positive integers.

2
® ]fq>N+3+\/2(N+1)(N—d)+<]\7+3> "

2 d 2

2d(Ng — 2N — 1) +2q + 2N? + 2N

k> )
dg(¢g— N —3) = 2(N 4+ 1)(N —d)
then there exist [q/2] + 1 indices i1, ..., iq/241 such that
(f. i) _ _ (fi, Hygya)
(f2, Hyy) (f2; Hig/241)

In particular, if ¢ > 2N, then f1 = fo.

(N +1)(d + 1)+\/(N+1)2(d+1)2 N2 -1
2d 4d? d

q(N—=1)(dg—N —-1)+ (dg+ N —1)(N +1)
dg? — (N+1)(d+1)g— N?+1 ’

(b)y If1<d<N,q> and

k>

then f1 = fo.

2N d(Nqg—q+ N +1) —2N2 4+ 2N
(© Ifd>N+1,qg>N+1+=— and k> (Vg—q+N+1) +

th = fo.
dlg—N—1)—2N : then f1 = fo
We note that, in [15] we together with Do Duc Thai also proved a similar result for the case

where the meromorphic mappings sharing /N 4+ 2 moving hyperplanes. Our this result deals with the
general case where the number ¢ of fixed hyperplanes belongs to [N + 2; 2N + 2].
We distinguish here some cases where the assumptions of Theorem 1.2 are satisfied.

1. The assumptions of the assertion (a) satisfies in the following cases:
6N? +4N +4

=1,g=2N
d ,q +3 and k > 3N 12

of Theorems C and D);
d(4N? + 4N —2) +2N? + 2N
2<d<N,q=2N+4—dand k > ;
== + an (N —d)d2N +4—d)—2(N+ 1)) +2N +4—d
2d(N?+ N —1) +2N? +4N +6
2(d—N)(N +1)
2. The assumptions of the assertion (b) satisfies in the following cases:
N*+5N3 +4N?2 — 7N +3
d=N,q=N N >2and k ;
N =d=1,q=>5and k > 2 (therefore, in this case we have an improvement of the Nevanlinna’s

(therefore, in this case Theorem 1.2 is improvement

d>N+1,g=N+3and k >

five values theorem).
3. The assumptions of the assertion (c) satisfies in the following cases:

d(N? + 3N —2) —2n2 + 2N
N41<d<2N.g=N+2andk> 2 F )~ "+ 2N

2(d— N) ’
d(N? +2N — 1) — 2n% + 2N
d>9N+1.g=N+2amdk> O+ d—Z)N noen
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2. Basic notions in Nevanlinna theory.  2.1. Divisors on C". We set | z|| = (|1]* + ...
ot ]zn]2)1/2 for z = (z1,...,2,) € C™ and define B(r) :={z € C": ||z|| < r}, S(r) :={z €
eC": |zl =r}, 0<r <oo.

Define d = 0+ 0, d° = 1

(3
s

(0 —9) and

c n—1
Up—1(2) 1= (dd Hsz) ,
on(2) :=dlog HzH2 A (ddc log ||z|]2)n_1 on C"\ {0}.

Let F' be a nonzero holomorphic function on a domain €2 in C". For a multiindex o = (v, ..., ),
olelp

weset lal=a1+...+a,and DV = —— ————
o = e " 9% 2y ... 0% 2,

. We define the mapping vr : 2 — Z by

vi(z) :=max {m: D*F(z) =0 forall a with |a|<m}, =z¢€Q.

We mean by a divisor on a domain 2 in C™ a mapping v : {2 — Z such that, for each a € (),
there are nonzero holomorphic functions F' and GG on a connected neighborhood U of a (C €2) such
that v(z) = vp(z) — vg(z) for each z € U outside an analytic set of dimension < n — 2. Two
divisors are regarded as the same if they are identical outside an analytic set of dimension < n — 2.
For a divisor v on Q we set |v| := {z: v(z) # 0}, which is a purely (n — 1)-dimensional analytic
subset of € or empty.

Take a nonzero meromorphic function ¢ on a domain 2 in C". For each a € (), we choose

F
nonzero holomorphic functions F' and G on a neighborhood U C €2 such that ¢ = oo U and

dim(F~1(0)nG~1(0)) < n—2, and we define the divisors v, v3° by v, = v,
are independent of choices of F' and G. Hence, they are globally well-defined on (2.
2.2. Counting functions. For a divisor v on C" and for positive integers k, M (or M = 00),

we define the counting functions of v as follows. Set

= Vg, which

M) (2) = min {M, v(2)},

() 0 if v(z) >k,
vep'(2) =

vM(2) if w(z) <k,

) vM(2) if v(z) >k,
vy (2) =

We define n(t) by

/ v(z)vop—1 if n>2
lv[NB(t)
ngt v(z) if n=

Similarly, we define n() (), nS (1), nl) (¢).

Define

n(t) =
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T

/
N(r,v) = / ;E_)l dt, 1<r<oo.

1

Similarly, we define N (r, I/(M)), N(r, yg\g)), N(r I/(M)) and denote them by N@)(r v),

' US>k
Ng;:[ ) (r,v), NS\I:[ ) (r,v), respectively.

Let ¢ : C" — C be a meromorphic function. Define
No(r) = N(r,vp),  NS™(r) = NM(r,u,),

M M M M
NOD ) =NED (), Ny = NGO ().

For brevity we will omit the superscript M) if M = .
2.3. Characteristic and proximity functions. Let f: C* — PV (C) be a meromorphic map-

ping. For arbitrarily fixed homogeneous coordinates (wp : ... : wy) on PY(C), we take a reduced

representation f = (fp : ... : fn), which means that each f; is a holomorphic function on C™ and

f(z) = (fo(z) : ... : fn(z)) outside the analytic set {fo = ... = fy = 0} of codimension > 2. Set
1/2

1= (Ifol* + ...+ 1/~]?)

The characteristic function of f is defined by

mwz/mmm—/mmm

S(r) S(1)

Let H be a hyperplane in PV (C) given by H = {aowo + . .. + anywy}. We define the proximity

function of H by
S IH]] / /]
me () = log ~~———0,, — log —=——— 0,
o) = [ tou i 5 (7. 1)
S(r) 5(1)

N , 1/2
where ||H|| = <Zi0’ai’ ) .

Let ¢ be a nonzero meromorphic function on C", which are occasionally regarded as a mero-
morphic mapping into P!(C). The proximity function of ¢ is defined by

m(r, ) = /logmax (lel, 1)op.
S(r)

As usual, by the notation “|| P” we mean the assertion P holds for all » € [0,00) excluding a

Borel subset E of the interval [0, c0) with / dr < oco.

2.4. Some lemmas. The following resﬁlts play essential roles in Nevanlinna theory (see [9,
12, 13]).

Theorem 2.1 (first main theorem). Let f: C" — PN(C) be a linearly nondegenerate mero-
morphic mapping and H be a hyperplane in PN (C). Then

Nimy(r) +mpp(r)=T(r, f), r>1.
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Theorem 2.2 (second main theorem). Let f: C" — PN (C) be a linearly nondegenerate mero-
morphic mapping and Hy, ..., H, be hyperplanes in general position in PN(C). Then

(e =N =1T@, f) <> NG () +o(T(r £).
=1

Lemma 2.1 (see [14]). Let f: C" — PN(C) be a linearly nondegenerate meromorphic map-
ping. Let Hyi,H>,...,H, be q hyperplanes in PN (C) located in general position. Assume that
k>N —1. Then

q

(531 2 o < 2 (1 537 ) N <alr) + 0T )

Lemma 2.2 (lemma on logarithmic derivative). Let f be a nonzero meromorphic function on
C™. Then

H m(r, Daf(f)> =O0(log™ T(r, f)), a€Z}.

Denote by M*,, the Abelian multiplicative group of all nonzero meromorphic functions on C".
Then the multiplicative group M*,,/C* is a torsion free Abelian group.

Definition 2.1. Let G be a torsion free Abelian group and A = (a1, as,...,aq) be a g-tuple
of elements a; in G. Let ¢ > r > s > 1. We say that the q-tuple A has the property (P,s) if
any v elements a(), ..., a,) in A satisfy the condition that for any given iy, ... is, 1 <13 < ...
oo < g <1y there exist ji,...,0s, 1 < g1 < ...<js <, with {i1,...,is} # {j1,...,]s} such
that Qi(iy) - - - A(is) = OU(jy) - - - Bl(js)-

Proposition 2.1 (see [4]). Let G be a torsion free Abelian group and A = (a1,...,aq) be a
q-tuple of elements a; in G. If A has the property (P, ) for some r,s with ¢ > r > s > 1, then
there exist iy, ..., iqg—rt2 With 1 <1y < ... <ig_ri2 < q such that a;; = ajy = ... = Qjy_,.,.

Lemma 2.3. Let f be a linearly nondegenerate meromorphic mappings of C" into PV (C). Let
H be a hyperplanes of PN (C), d be a positive integer and k is a positive integer or +oc with
k > d, then

d

k+1
@) (. 1,0 =
N vig,y,<i) 2 k+1—d

d
= mN( )(7“7 V(f,H)) -

(r, ).
Proof- We have

N@ (r, V(f,H),gk) =N@ (r, V(f,H)) ~ N@ (7, V(f,H),>k) >
d
> N(d)(rv V(f,H)) - k+ 1N(T‘, V(OfyH),>k) =
d

= ND(r,vs,m) - il

N(r,vigmy) — N v my <k) >

d d
> NO(rvpm) = =T )+ == ND (s m) <i)-

kE+1 E+1
This implies that
E+1 d
d d
N (v <) > 1 —dN( rvpm) — 1 alif).

The lemma is proved.
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3. Proof of Theorem 1.1. Suppose that f; Z fo. We set T'(r) = T'(r, f1) + T'(r, f2).
For two index 4,7 € {1,...,2N + 2}, we set

ZJ _(fl? )(f27 ) (fla )(f27 )
By Jensen’s formula, we easily see that

Np, () < /log\fl, Vo Hy) — (fu Hy) (o Ho|ow <

S(r)
< [ 1oglillon+ [ loglfallon +0(1) = T(r) +O(1). G3.1)
S(r) S(r)
Claim 3.1. Assume that P;; # 0. Then we have

2N +2
. 1
> N (romin {vg, ) <k g,<n}) + Y N () STE) +0(1), s =1,2,
v=1,] v#l
vF#£L,J
In fact, we will prove the above inequality for s = 1. We see that for each

z € Supp vy, 1,),<k» vV = i, ], one has

vp, (2) > min {vis b,),.<k(2), Vom,),<k(2) }-

Also, for each z € J vz,  Suppv(ys m,) <k, since f(z) = g(z) we get P;j(z) = 0 and then

1<v<2N+2
2N+2 "
1
> 2 Niga<i(®):
VF£i,J
v=1
Therefore, we obtain
2N+2 "
. 1
VPij(z) > mln{y(fl,Hu) ( ) V(fo,H } + Z N(fl,Hv) <k )
v;ﬁz ]

for all z € C™ outside an analytic set of codimension two. By integrating both sides of the above
inequality, we have

2N+2
> N(rmin {vg, m,)<ko Wport)<k}) + D N((}B,H,U)(T) < Np, (7).

v=1,j vZL
Combining this inequality and (3.1), we obtain

2N+2
S N (rmin (v ) <o Vi) + D NGy () < T(r) +0(1),

v=t,j v=1
J v#£i,j

This proves the claim.
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For each i € {1,...,2N + 2}, we define the divisor y; as follows:

Uit vy m)(2) # V(ga,m)(2),

0 for otherwise.

pi(z) =

For each z € Supp (v(4, m,)) USupp (v(y,,1,)), we easily see that
if z € Supp (v(y,,m,),<k) U Supp (v(4, 1;),<k), then by the assumption (a) of the theorem, for
each s = 1,2, we have

pi(2) <min{vig, gy, <k(2)s Viga,m,),<k(2) } =

&) (V) 1)

V), <k 8) T V<2 + NV ) < (2);
otherwise z € Supp (v(y,,1,),>k) U Supp (v(4, 1), >1), then

(1) (1)
Hi(2) S Vg k(2 V(g ) sk (2):

Therefore, we have

i < min{V(thi)ék;a (f2,Hy), <k‘} f17) H;),<

o) (1) (1) (1)
“Vipry<k TNV )<k T Vhm)5k T V() >k

outside an analytic set of codimension two. This yields that

: N
N(r,p;) < N(r, mln{V(fl,Hi),gka V(fo,H, <k}) fl,H)<k,‘( r)— N((fz,)Hi),Sk(r)+
(1) (1) 1)
+NN(fs, H;),< ( )+ N(f1 H;), >k( r)+ N(f2 H),> (T) (3.2)
Claim 3.2: N
Eih N+1)(N +8)

(
; N(r, ;) < TN

Indeed, by changing indices if necessary, we may assume that

(fi.H) _ (fi,H2) _ _ (fuHe) o, VL He) 0 _ (f1, Hiy)
(fo, H1) — (fe, H2) — (fo, Hiy) 7 (f2 Hiy11) — (f2, Hiy)
group 1 group 2
(fi:Hep1) _— _ (f1, Hi) (f1,Hpoi+1) _ _ (f1, Hi,)
(f2, Hiprr) — (f2, Hy) (f2s Hioiv1) 0 (fos Hiy)
group 3 group s

where kg = 2N + 2.
Foreach 1 <i < 2N + 2, we set

i+N+1 if i<N-+1,
7(i) =
i—N—-1 if i>N+1.
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(f1, Hy)
(f2, Hy)

belong to distinct groups. This means that P.;); 0, 1 <¢ < 2N + 2. From Claim 3.1,

Since fi # fo, the number of elements of every group is at most N. Hence, and

(f1, Hr())
(f2, Hy 1) )

we have
2N+2

T(r)= Z N(r, min {V(flva)ék’V(fz,Hv)ék} Z Nfs,Hi, <k (r)+0(1), s=12.
v=1,7(%) v=
v#i, T(’L)

Summing-up of both sides of the above inequality over all pairs (i,7(7)), by (3.2) and Lemma 2.3,
for each s = 1,2 we get

2N+2
(N+ 1)T Z N r mln{u (f1,Hy),<k> V(fo,H,) <k})
v=1
2N+2
+N Z N (r) 4+ 0(1) >
2N+2 (N) ( )
1
> Z N(T’ Hl) + Z (N(ftva)vgk(r) o N(fliHU)7>k(r)) -
v=1 t=1,2
2N+2 1 ( )
=2 | NOum)+ <th,Hv> (1) - NN(fl,Hv>>k(T)) -
v=1 t=1,2
2N+2
N+1_ (N 1 N
=D (Nw)+ ) (N NG <) = 3 N )> =
v=1 t=1,2
2N+2
N+1[/ k+1 N
=D [N+ Y ( N <k+1—NN(ft:Hv)(T)_k:Jrl—JVT(T’ft))_
v=1 t=1,2
(N)
o N(thv)( )> 2
2N+2
(N+1)(k+1) (N) N
2 2 (N 2 o (e )N - T 2

2N+2
> (N + 1)<N (W - 1) - &)T(r) + Z:: Nr, ).

Thus,

This proves the claim.
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Claim 3.3. For i,j € {1,...,2N + 2} such that P;; # 0, we have

6 ) 2v+2 3)

| 70) = N, () =3 N(romin (v, i Vg k) + Z N s <r(r) =
v=hi oy

3 2N-+2 (4)

2 Z < fl,HU)<k )+N<(2)HU><1€( ) — NN((;S)HU ) Z N(}S{Hv)«c (r) =
U#ZJ

@
é(l—M)T(r)—l—O(l), s=1,2.

Indeed, inequalities (1) and (2) are clear. The third inequality follows from the inequality
min{a,b} > min{a,n} — min{b,n} — 1 for two integers a and b. We will prove the last inequality.
Without loss of generality, we may assume that ¢ = 1 and j = 7(1). Then we obtain

(V) (V) (1)
> (N(fl,Hv),<k( )+ Nip,),<i (") = NNG gy < (r )>+
v=1,7(1)

2N+2

1
> N((fs),HU),Sk(T) —T(r) =
v=1
vF#L,J

N+1
(N) (N) (1)
> ( > (N(fl,Hv),gkU Nyt <) = NNG 1y < ))+
t=1 \v=t,7(t)

+

2N+2
1
+ Z N f>H ) = T(r))Z

'uyﬁz 7

2N+2
N
= Z ( f1,Hr) <k )+N((f2,)Ht),§k(7°)> —(N+1DT(r) >

(N+1)(E+1)— N(2N +2) —N(N +1)
> - _ TN T D
= ( - T(r) - (N + )T(r) = 070
This proves the last inequality of the claim.
H;
Assume that H; = {ajowo + ... + ajywny = 0}. We set h; = E?’ g, 1 <i<2N +2.
2a i

o i () (o, )
hj — (fi,H )(f27 i)
Z:[:O aikfie — Py Zk:o aipfor = 0, 1 < i < 2N + 2, it implies that det(ao, . .., aiN, aiohi, - ..
ainhi;1 <i<2N +2)=0.
For each subset I C {1,2,...,2N + 2}, put hy = Hiel hi. Denote by Z the set of all
combinations I = (i1,...,iy4+1) With 1 <ip < ... <iyg1 < 2N +2.
For each I = (iy,...,in+1) € Z, define

does not depend on representations of fi and fo, respectively. Since
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Ay = (_1)(N+1)2<N+2)+i1+...+i1v+1 det(airﬁ 1<r<N+1,0<I< N)X

xdet(a;;; 1<s<N+1, 0<I<N),

where J = (j1,...,jn+1) € Z suchthat TUJ ={1,2,...,2N + 2}.
Then ZIEI A[h[ = 0.
Take Ip € Z. Then

. A
AIOhIO = — Z A[h[, 1.€., hIO = — Z 71]1[

Remark that for each I € 7, then — §é 0.

Denote by ¢ the minimal number satlsfymg the following: There exist t elements I1,...,[; €

€ Z\ {Ip} and ¢ nonzero constants b; € C such that h;, = Z:ﬂ bihy,. It is easy to see that
2N +2
b= ( N+1 ) -1

Since hj, # 0 and by the minimality of ¢, it follows that the family {hy,,...,hy} is linearly
independent over C.

Assume that ¢ > 2. Consider the meromorphic mapping h: C* — P!~!(C) with a reduced
representation h = (dhy, : ... : dhy,), where d is meromorphic on C". We see that if z is a zero
or pole of some dhy;, then it must be zero or pole of some h;, i.e., pi(z) = 1. Then by the second
main theorem, we have

HTTh <ZNdh +N$l 1)( ) +o(T(r,h)) <

(Z Ny (r) + Ny (r )) +o(T(r, h)) <

2N+2
<(@E=-1)(t+1) Y N(rm) +o(T(r,h)) + o(T(r)) <
=1
_ 2 _
U ”;5?113% D) + o(T(r, ) + o(T(r)).

This yields that || T'(r, h) = o(T(1)).
On the other hand, we get

3T(r,h) > NYy) (1) + N1 1(r)+N£}I3) (1) +0().

hr
Since Wy = 1 on the set Ujc((ru\ nJy)e Ej» where Ej = {z € C": vy, ) <x(z) > 0} and

(HUL)\(I1NL) U (I2Ul)\ (I2N1p) U (ToUlL)\ (Ion1)) =
={1,...,2N +2}, s=1,2,
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it implies that

Ay
1, 1, 39

2N+
(1) (1) 1
Nh11 (T)—I_Nhﬁ_l( )+Nh10 Z Nf57 N Z fs: )
=1

Hence, for each s = 1, 2, we obtain

12N+2
HSTrh > ZNfg’ i< (7)

v

- N(k:+11N) (<N +1)(k+1) = NN + 2>>T<r, f)+

(N +1)(k — 2N +1)

FolT() = ST gy T fi) +o(T)).

Therefore, we have

MV—U@+1XN2—DT, o (N4 1k —2N +1)
k+1-N "2 —NGri=m

T(r)+ o(T(r)).
This implies that
k<6(t—1)(t+1)(N>-~N)+2N —1<6(m—2)m(N>—-N)+2N -1

This is a contradiction.

h
Thus, ¢ = 1. Then h—lo = constant # 0. Hence, for each I € Z, there is J € 7\ {[}
Iy

h
such that h—l = constant # 0. Consider the free Abelian subgroup generated by the family

J
{[h1], ..., [han+2]} of the torsion free Abelian group M*,,/C*. Then the family {[h1], ..., [han+2]}
has the property Pon2 v41. It implies that there exist 2N + 2 — 2N = 2 elements, without loss of
h
generality we may assume that they are [h1], [h2], such that [hi] = [ha]. Then h—l =7eC"
2

Suppose that 7 # 1. Since for each z € U2N+2 Supp V(s 1)<k \ Uiz12(fi Y(H) U fH(Hy))

we have ZIE 3 = 1, the set UQNJr Supp V(s m;),<k 18 a subset of (J;_; o(f; Y u 7 (Hy)),
22

and, hence, it is a subset of (J;_; » (Supp vy, a,),>& U SUpb (1, i1,),>k) - By Lemma 2.1, we have

H (N —1)(k+1) —2N?
k+1-N

2N+2

<3S N <) +o(T(r) <

s=1,2 =3

<ZNZNJ2, o Ho(T(r)) <

s=1,2 i=1,2

(T(r, f1) + T(r, f2)) <
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2N
< =T T(r)).

< T +o(T()
(N—1)(k+1)—2N2< 2N
k+1-N k41

Letting r — 400, we get . This is a contradiction. Thus, 7 = 1,
i.e., hl = h2.

Now we consider

Pir1y = Pyngoy = (f1, Hi)(fo, Hny2) — (f2, Hi) (f1, Hyyo) =

_ (f17H1)<((f17H2) (f27H2))> £ 0.

(fi, Ho) \ (f1, Hn12)  (fo, Hynyo

For a point z & USupp vy, m,),>k U SUPP V(f, Hy0),>k U SUPP V(f, Hy o), >k> W see that
if z € Supp (4, m,),<k for some v # 1, N + 1, then Py(ny19)(2) =0, ie,

VP (nyg) (%) 2 Z min{l, vz m,) <k}
v#1

if z € Supp v(y, m,),<k, then z is a zero of P9y with multiplicity at least vy, g,y <k (2) +
+min{1, vy m),<kr}, hence,

VP1(N+2) (Z) > min{N, V(fl,Hl),Sk}(z) + min{Na V(fQ,Hl),Sk(Z)}_
—(N = D)min{1, vf, m)),<k(2)},

if z € Suppvy, Hy,.)<ks then z is a zero of Pyyo) with multiplicity at least
V(fl,HN+2)7§k(z) + min{l’ V(flyHN+2)7§k}’ hence,

VP (n12) (z) = min{N, V(fl:HN+2):§k(Z)}+
+min{N, V(f2,HN+2),Sk(Z)} — Nmin{l, v, ) <k(2)}-

Therefore, this implies that

VPi(n12) 2 Z (min{N7 V(fl,Hv)»Sk} +min{N7 V(fl,Hv)’Sk} - Nmin{l”/(f17Hv)7§k})+
v=1,N+2

2N+2
+ Z min{l,lj(thv)ék}+min{1vy(f1,H1)7§k}_

v#1,N+2
v=1

—(N + 1)(min{1, V(f17H2)7>k} + min{1, V(fl’HN+2)7>k} + min{1, V(fg,HN+2),>k})-

By integrating both sides of the above inequality, we obtain

N N 1
TO) 2 Neyern (1) 2 D0 (N <2+ N (2 = NN () +
v=1,N+2

RN )
1 1
+ D N a<n )+ Ny (1) =

v#£1,N+2
v=1
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(by Claim 3.3(4))

(1) (1) 1)
—(N+1) (N(f17H2)7>k(r) Ny ), k(1) + N(f27HN+2)7>k(T)) 2
(by Claim 3.3(4)) N(N + 1) (1)
> (1_k+1_N>T(T)+N(f1,H1),§k(r)

N+1

m(T(T‘a fi) +T(r)) +o(T(r)).

Similarly, we have

7(0) 2 (1= T NT0) + Ny )~ o (T 2) + 7)) +oT(0)),

k+1—N k41
Therefore,
N(N+1) 3(N +1)
T(r) > <1 - M)T(m + NG <) - mm) +o(T(r)).
Thus,
N(N +1 3(N +1
H ((.;1)7H1)7§k(7ﬂ) < <k _E_ 1 i ]\)f 2((/<: :—1))>T(7“) + o(T(r)). (3.3)

On the other hand, since f; # fo, for each ¢ # 1 there exists an index j such that P;; # 0 and
P;; # 0. Therefore, by Claim 3.3, we easily see that

N(N+1) 2N+2
7,{4_ =N Z N(r, mln{y (f1,Ho),<k> V(fo,Hy) <k} Z thHU <k
v=t,j U;ﬁ”
N () M £
1
| D2 (V<) + NGy <) = NN ) ) + ZNm, =
v=1,j WEU
> N (rymin {vg, ) <hs U, <) + N5 <)
(V) (V) M
(N(fl,H1)<k( ")+ N, (T) = (N DNy (7 )) >
M )
= 2N(f17H) ( ) — (N — )N(fl,Hl) <k(r).
This implies that
(1) N(N +1) N-1_q)
86 0.000) < s T = Ry T0)+ 5 NG alr) <
N?2(N+1)  3(N?2-1)
T T(r)). 4
(2(k+1—N) 4k +1) ) (r) +oT(r)) (3-4)

Now applying Lemma 2.1 and using (3.3) and (3.4), we have

N F1)-NEN+2) A
Sy £ 3 N h(0) ol <
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2N+1

= §:‘NN8Laék&)+OuYM)S
=1

N2(N+1)  3(N%?-1)
= (N(2N+1)(2(k+1—N)+ 1+ 1) )

N(N+1) 3(N+1)

(k+1—Nﬁ_ﬂk+U>>T&y+dTv»§
N2(N +1)
k+1-N

< N(2N +1) T(r) 4+ o(T(r)).

Similarly, we obtain

(N +1)(k+1)— N@2N +2)
k+1—N

N2(N +1)
k+1-N

T(r,f2) < N(2N +1) T(r)+ o(T(r)).

Then

(N+1)(k+1)— N(2N +2) N%(N +1)

T(r) < 2N(2N +1) T(r) + o(T(r)).

k+1—-N k+1—-N
Letting r — +00, we get
(N+1)(k+1)— N(2N +2) N2(N +1)
<2N(@2N +1)——=.
k+1—-N - (2N + )k‘+1—N

This implies that
k<4AN* +2N3 42N —1<6N*+2N —1<
<6(2VNFTL —2)2N L L oN — 1 < 6(m — 2)m + 2N — 1.

This is a contradiction. Hence, f1 = f5.

Theorem 1.1 is proved.

4. Proof of Theorem 1.2. Assume that fi, fo have reduce representation f; = (fio : ... : fin),
1 =1,2. We will use the same notations which are introduced in the proof of Theorem 1.1. Define

I = I(fl) U I(fz) U1§t<5§q {Z S (Cn | V(tht),Sk(Z)V(ths),Sk(Z) > O}

Then [ is an analytic set of codimension 2 or empty set. For each i € {1,...,q}, we set

N N 1
Nilr) = Nig iy <) + Ny <) = (N + DN ) 4 (0),
For each permutation I = (i1,...,4,) of {1,...,¢}, we define 77 the set of all r € [1,+00) such
that
Nil(T‘> 2 NZ'Q(’I“) Z e Z Niq(r).
Then we see that | J; 77 = [1,+00). Therefore, there exists a permutation, for instance it is [ =
= (1,...,q) such that / dr = +00.

Ty
We also remark that with the assumptions of (a) or (b) or (c), one always has £ > N.

We first prove the assertion (a).
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Claim 4.1. If P;; # 0, then the following assertion holds:

q
T() = 3 (V) < M+N ) D= (NHON Py ()43 dNPy ) (1) +o(T(r).
v=1

v=1,j

Indeed, we fix a point z ¢ I satistying v(¢, g, <i(2) > 0, t # i, j. Suppose that f1;(2)fo(2) =
=0, 0 <1 < N. Then fy(z) =0, 0 <[ < N. This means that z € I(f2). This is impossible.
Hence, there exists an index [ such that f1;(2)fo;(z) # 0. This implies that

o _Li _
D (fllf2l>(2) =0 Vol <d

Hence, vp,(z) > d.
Now we fix a point z ¢ I satisfying v(y, p,) <x(2) > 0, t = i, j, for instance ¢ = 7. Then we
easily have the following:

vp,(2) = min {vs, pmy) <i(2), Vg m),<k(2) } >
>m1n{N V(f1,Hy), <k( }+m1n{N V(fa,Hy), } len{l V(f1,Hy), <k(2 )}

Therefore, we get

ve, Y (min{N,vp, ) <} +min{N, v, 1) <i}—

v=1,j
q
—(N + d) min{1, V(tht),Sk}) + dz min{1, v(s, m,)<k}
v=1
outside an analytic set of codimension two. This implies that
q
(N) N (1)
> 2. ( () & Nty <k (1) = (N + AN(p gy <1 (1) ) +dY NG <)
v=1,] v=1

By Jensen’s formula, it is also clear that
T(r) = Np,(r) +o(T(r)).
This proves the claim.

Now we suppose that there exists an index 7 € {1, ey [g} + 1} such that Py; # 0. For r € T7,

we obtain

HT(T) Z (N((;Y?Hv) <(r )+N((J]‘Z,)Hv),§k(r)_

v=1,%

Y

q
1
—(N +d) ((fl)H <k () >+dZN((f1),HU),§k(T)

v=1

(™) ()
=2 Z (NG <) + N ()=
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N ()
~(N+ AN, g,y <i(r )> + le Neg m),<k() 2
v=

2 (V)
e Z(Nfl,Hu <)+ Ny, < (1) =

q
N 1) _
~(N NG 1) +A DN ) ) =

v=1
(N)
- Z( (fla (r) + N(fQ,HU),gk(r)>+
2(N +d)\ <= (1)
+ (d B q> Z_: Nig <) 2

2 d N +d\ <& (N) (N)
Z <q ton Nq ) Z(N(fl,Hv),Sk(T) + N <) 2

v=1

9 d N+d\[(¢—N-1)(k+1)— Ng B
> (2 g - B (D= M ) 4 o) -

_dq+2N —-2d(q—N—-1)k—-Nqg+q—N—1
B 2Ngq E+1-N

T(r) 4+ o(T(r)).

Letting r — 400 (r € T7), we get

_dqg+2N—2d(q—N—1k—Nq+q—N—1
= 2Ng k+1—N '

Thus,
k(dg(g — N —3) —=2(N +1)(N —d)) <d(N —1)(q¢ — 2)q + (¢d + 2N — 2d)(N + 1).

By the assumption of the theorem we see that dg(q — N — 3) —2(N + 1)(N — d) > 0, and then the
above inequality yields that

< AN = 1)(g—2)g+ (qd + 2N — 2d)(N + 1)
= dg(q— N —3) —2(N + 1)(N — d)

This is a contradiction. Thus, there does not exist the index 4 such that Py; Z 0 with ¢ < [¢/2] + 1
Therefore, we have

(flyHl) _ (flv lq/2]+ )
(f2 Hy) 7 (fas higya1)

The assertion (a) is proved.
We prove the assertion (b). As the first part, we use the same notations.
Claim 4.2. If P;; # 0, then the following assertion holds:

N N
T(r) = (N <n) + Ny <0) = (N + NG 0 () +
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q
+) dN, <(},)HU>,Sk(r> + o(T(r)).

v=1

As in the proof of the first assertion, we fix z ¢ I satisfying v(y, g, <x(2) > 0, t # i. Then there
exists an index [ such that fy;(z) fo;(z) # 0. This implies that

D“( L >(z):0 V]a| < d.

Juifau
Hence, vp,(z) > d.
For a point 2 ¢ I satisfying v(s, m,) <k(2) > 0, we also get
vp;(2) 2 mind N, v(g, m), < (2)} + mind N, vip, m) <i(2)} — Nmin{ L v, gy <k (2)}-

Therefore, we have

Vp;; > min{N7 V(thz‘),Sk} + min{N’ V(f2,Hi)7Sk}_

q
—(N + d) min{1, V(fl,Hi),Sk} + dz min{1, V(fl,Hu),Sk}
v=1

outside an analytic set of codimension two. This implies that

(V) (V) N
Npy 2 Nigy <) + Ny gy <n(r) = (N + Ny, +dZN

By Jensen’s formula, we get
T(r) > Np,;(r) +o(T(r)).
This proves the claim.

Now we suppose that f; # fo, then there exists an index ¢ % 1 such that P;; # 0. For r € T7,
we obtain

™) () ey
| 709 2 (N <00+ Ny <) = OV + NG, (0 )+dZNf1,Hu <k(r

1 Qs [ () ™) ) D)
> 2 (NG b r )+ Ny 1) = N+ NG ) ) +d DN ) () =

v=1

1 (N) (N) N +d q Q)
T q (N(f“H”)S"/‘( ™)+ Nipyuam) <" )) G q D N my,en(r) =

1 d N +d\ & (N)
> (3 = ) S )+ N ) 2

v=1

(Lo ) (N DD

_dg+N-d(g—N-1)k—Ng+q—N—1
2Ny k+1—-N

Vv

T(r)+ o(T(r)).
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Letting r — +oo (r € T7), we have

1

_dqg+N—d(@=N-1k-Ng+q-N—1
= 2Ng k+1—N ‘

Thus,
E(dg> — (N +1)(d+1)g— N?+1) <q(N —1)(dg— N — 1)+ (dg+ N — 1)(N +1).

By the assumption of the theorem, we see that dg? — (N + 1)(d 4+ 1)g — N? + 1 > 0, and then the
above inequality yields that

p< IV -1)(dg—N—-1)+(dg+ N -1)(N +1)
- d¢> — (N+1)(d+1)g— N?+1

This is a contradiction. Thus, f; = f2. The assertion (b) is proved.

We prove the assertion (c). Suppose that f; # fa, then there exist two index 4,5 € {0,..., N}
such that P = f1;fo; — fijf2i Z 0.

We fix a point 2 & I with v(f, p,y(z),<x > 0. Then there exists an index [ such that f1;(2) fa(2) #
# 0. This implies that

o P —
D <fllf2l>(z)—0 V]a| < N.

Hence, vp(z) > d. Therefore, we have

q
vp Z dz min{l’ V(f1,HU),§k}

v=1

outside an analytic set of codimension two. By Lemma 2.3, this implies that

d(g=N-1(+1)-Ng
N k+1-N

(r) =

(Ta fl)

M-
=
=2
=
78

Bl

=

vV
2|~
M-
=
=2
5
78

bl

Np. >d

i —

By Jensen’s formula and the above inequality, we have

d(g=N-1)(k+1)—Ng
N k+1—-—N

T(r) = Np,;(r) +o(T(r)) = T(r, f1) + o(T(r)).

Similarly, we get

d(g—N-1)(k+1)— Ng

T(r) > T(r, fa) + o(T(r)).

N k+1-N
Therefore,
d (g—N—-1)(k+1)— Ngq
> — .
T(r) > gt AT () 4 o(T ()

Letting 7 — 400 (r € T7), we get

1>i(qu71)(k:+1)qu
— 2N k+1—-—N '
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Thus,
k(d(g— N —1) —2N) < d(Nq—q+ N +1) — 2N? + 2N.

By the assumption of the theorem, we see that d(¢— N —1) —2N > 0, and then the above inequality
yields that
L < d(Ng—q+ N +1) —2N?+2N
- dlg—N—-1)—-2N

This is a contradiction. Thus, f; = f2. The assertion (c) is proved.
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