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RESONANT EQUATIONS WITH CLASSICAL
ORTHOGONAL POLYNOMIALS. IT

PE3OHAHCHI PIBHSAHHSA 3 KNIACHYHUMU
OPTOI'OHAJIBHUMH ITOJITHOMAMM. 11

We study some resonant equations related to the classical orthogonal polynomials on infinite intervals, i.e., the Hermite
and the Laguerre orthogonal polynomials, and propose an algorithm of finding their particular and general solutions in the
closed form. The algorithm is especially suitable for the computer-algebra tools, such as Maple. The resonant equations
form an essential part of various applications, e.g., of the efficient functional-discrete method for the solution of operator
equations and eigenvalue problems. These equations also appear in the context of supersymmetric Casimir operators for
the di-spin algebra, as well as of the square operator equations A%u = f, e.g., of the biharmonic equation.

BuBUYaKOTHCS PE30HAHCHI PIBHSHHS, L0 TIOB’s3aHi 3 KIACHYHUMH OPTOTOHAJbHMMH MHOTOYJICHAMH, 3a[aHUMU Ha HECKiH-
YEHHHUX IHTepBajax, TOOTO 3 OPTOroHaJBHMUMHU MHOrowIeHaMu Epwmira i Jlareppa. 3anpornoHoBaHO airopuT™ 3HaXOKEHHS
XHIX YaCTHHHMX PO3B’S3KIiB i 3arajJbHOTO PO3B’sI3KYy B 3aMKHEHOMY BHDIsii. Lleit anroputm € ocoOiInBO 3pyYyHUM B iM-
IUIEMeHTAalli 3aco0aMu KOMI'I0TepHOI anredpu, Hanpuknaa, Maple. Pe3oHaHCHI piBHSHHS € BarOMOIO CKJIQJIOBOIO Pi3HUX
3aCTOCYBaHb, HANPUKIAA €(pEeKTHBHOIO (DYHKIIOHAJIBHO-IUCKPETHOTO METOIY PO3B’S3yBaHHS ONEPAaTOPHUX DIBHSIHB 1 3a-
a4 Ha BIAcHI 3Ha4eHHs. Taki piBHAHHS BHHHUKAIOTH TaKOX Y KOHTEKCTI CyNEpCHMETPUYHHUX omeparopiB Kasmmipa mis
Ii-CITIHOBOI anreOpH, a TaKoX HPHU PO3B’s3yBaHHI ONEPAaTOPHUX PIBHSAHb 3 KBAJPAaTOM JAESIKOTO OIEepaTropa, HaNpUKIIAX
OIrapMOHIYHOTO PiBHSHHS.

1. Introduction. This paper represents the second part of the eponymous paper from the previous
issue of this journal. Here we study the resonant equations with the differential operators defining
the classical orthogonal polynomials on infinity intervals, namely the Hermite and the Laguerre
orthogonal polynomials. We use the Algorithm 3.1 from part I (see [4]) to obtain the particular
solutions of the corresponding resonant equations of the first and of the second kind. We obtain
explicit formulas for the general solutions of the corresponding inhomogeneous resonant differential
equations.

2. Resonant equation of the Hermite type. 2.1. The Hermite resonant equation of the first
kind. In this section we consider the following resonant gather of the Hermite type:

exp (o) & [exp (—2?)

du(x)
dz

] + 2nu(z) = Hp(x), (2.1)

where H,(z) is the Hermite polynomial, satisfying the homogeneous differential equation. The
Hermite polynomial H,,(x) can be represented through the hypergeometric function

Qyﬁ<1gy>[z]+1 1 1[ b 2] _2"“\/7?<‘2”>[g]+1

r([ee50) R ([ )

for v = n (see [6, p. 147]). The general solution of the homogeneous equation (2.1) is given by

1—-v 3
x 15 [2V7 2;362}

(2.2)

H,(x) =
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456 1. GAVRILYUK, V. MAKAROV

u(z) = ey Hp(x) + cohp (),

where
T exp (—12) H,(t
ho(z) = — exp (=) O g n=0.1.2. .. eC\(—c0 00).
t—=z

is the Hermite functions of the second kind, which satisfies the recurrence equation for the Hermite
polynomials. This function can be expressed also through the confluent hypergeometric function in
the following way [5]:

om —1
hon(z) = (=1)"2" T (2n) 12y Fy <_ n2 3;;332) _

= [pgn(x) exp (xQ) + ﬁHgn(m)erﬁ(x)] , n=12,...,

2 11
h2n+1(l‘) = (_1)n+1 (2n)!!271”1F1 <— nt Pt 2)

2 2"
= [pant1(@) exp (¢7) + VT Hopi1 (x)erfi(z)], n=0,1,....

These formulas were obtained by Maple solving the Hermite differential equation and they satisfy
the difference equation

Pnt1(x) = 2xpy(x) — 2npp_1(z), n=1,2,...,
(2.3)

po(z) =0, pi(z) = —-2.

The formulas for the odd and the even indexes can be unified in the following formula:

() = (- 23 (2 [ 2] a2}

n n—+1 1 n-+1
><1F1<—2+{ 5 };2+2{ 5 };1,2), n=0,1,..., (2.4)

where [z] and {2} denote the integer and the fractional parts of the real number x.
The last expression can be transformed to

hn(2) = Hy(z)V/merfi(z) + pa(@) exp (27)

where the polynomials p,(x) satisfy the recurrence equation (2.3).
We use Theorem 3.1 of [4] to find a particular solution of the inhomogeneous equation. We begin
with the case n = 0, i.e., we differentiate representation (2.2) by v, i.e.,

5 1 d —v 1
tio(z) = 9 dy 151 <2§ 2§$2>

set thereafter » = 0 and omit some summands, which satisfy the homogeneous equation

)
v=0
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RESONANT EQUATIONS WITH CLASSICAL ORTHOGONAL POLYNOMIALS. I 457

iz 2p \F /exp 1 — erfc( )} dt. (2-5)

(),

Analogously in order to obtain w;(xz) we set n = 1 in (2.2), differentiate by v, substitute v = 1
and omit some summands satisfying the homogeneous differential equation. Then we obtain with the
assistance of Maple

| =

l\DM—l

-3
2 2)p

- g/ﬂ {V/mexp (t?) [L —erfe(t)] — 2t} dt, (2.6)

0

where erfc(x) is the imaginary error function [2].

One can observe that this way to obtain particular solutions is very cumbersome. Below one can
see that Algorithm 3.1 from part I [4] provides a more comfortable way.

Actually, let us differentiate the recurrence relation for the Hermite polynomials

Hyii(x) —2xHy(x) + 2nHp—1(x) =0
by n, then using Theorem 3.1 of [4] we obtain the following recursion:
Un+1(2) = 22up(x) — 2nup—1(z) + Hp—1(x), n=1,2,.... (2.7

Using (2.5), (2.6) we have the following expressions as particular solutions:
X
xo(z) = E(x) = \g? /erf(t) exp (tQ) dt,
0

1

dr
Z LPCYHy_p(x )dxp E(z) + x.
p=0

Further we use the ansatzes

uo(x) = xo(x) +co, wr(z) = x1(z) + 1z (2.8)

with undefined coefficients cg, c; for the initial values of Algorithm 3.1 from part I (see [4]). Sub-
stituting these into the recurrence equation (2.7) with n = 1 and choosing these coefficients so that
ug(x) satisfies the resonant equation, we obtain that ¢y can be arbitrary and ¢; should satisfy the
equation

4+ 4c = O,

i.e., c; = —1. Note that if we choose ¢y = 0, then we arrive at the representation
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un () = I;O(—l)pCﬁan(x) e

E(x),

(2.9)
E(z) = */27? / erf(t) exp (¢%) dt
0

which for n = 0, 1,2 was obtained in [3].

We have constructed ug(x), & = 0,1,2, so, that these functions are particular solutions of
the Hermite resonant equation of the first kind. The next theorem shows that it is the case for
alln=0,1,2,....

Theorem 2.1. The functions ug(x), k = 3,4,..., obtained by the recursion (2.7) with the
initial conditions uy(x), k = 0,1, given by (2.8) and ¢y = 0, ¢y = —1, satisfy the resonant Hermite
differential equation of the first kind.

Proof. We prove this assertion by induction.

Let us assume that u,(z), p = 0,1,...,n, all satisfy the resonant Hermite differential equation
of the first kind (2.1). Applying to the recurrence equation (2.7) the Hermite differential operator

d? d
20 — +2(n+1),

Anir = g2 ~ 2 50

and using the induction assumption, we obtain

d
At (@) = Hya @)+ (422D g @) vam, @] @10

Further we use the classical relation (see, e.g., [3], § 10.13)

dH,(x)
dx

=2nH,_(x).

Differentiating this equality by n and using Theorem 3.1 of [4] we get

d
2 Pl (@) + 207, (2,

which shows that the square bracket in (2.10) is equal to zero.

Theorem 2.1 is proved.

Remark 2.1. Despite their beauty the formulas (2.9) are uncomfortable for the practical calcu-
lations because it requires differentiation. From this point of view our recurrent algorithm is more
comfortable and can be easily performed using a computer algebra tool like Maple.

Now, the general solution of the resonant equation (2.1) is given by

uw(z) = c1Hp(x) + cohp(x) + up (), (2.11)

where cq, co are arbitrary constants.
2.2. The Hermite resonant equation of the second kind. Let us consider the resonant equation

duy ()

| T 2nup () = hy(x), (2.12)

exp (a?) © |exp (~a?)
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where h,(z) are the Hermite functions of the second kind defined by (2.4).
Due to Theorem 3.1 of [4] we have a particular solution of the Hermite resonant equation (2.12)
of the second kind in the form

un(z) = (1) ]l5]+1 (2 [gDH <_n;21>nxalpl <_’; n %; §5x2> _

, (2.13)

v=n

where (a)_1 = 0. The general solution of (2.12) possesses the form (2.11).
To obtain a recursive algorithm for particular solutions, we differentiate the recurrence equation
for the Hermite functions of the second kind by n and obtain

Unt1(x) = 2zup(x) — 2nUp—1(x) + hp—1(x), n=1,2,.... (2.14)

From (2.13) we extract the following particular solutions for n = 0, 1:

Xo(x) = ﬁ//elﬁ(f) exp (—¢%) d€exp (t%) dt,
0 0

(2.15)

T

i) = [ -2 / (Verfi(©)¢ — oxp (€2))% exp (—€2) déat

0

T

+2/ (Vmerfi(é)Eexp (—€%) — 1) £d¢ | (Vmerfi(z)x — exp (27))

0

which we modify to the initial values for the recursion (2.14) so that ug(x) satisfies the differential
equation. With this aim we use the ansatzes

uo(z) = xo(z) + coho(z), wi(z) =x1(z) + c1ha(z) (2.16)

with undefined coefficients c;, cp. Substituting these into (2.14) with n = 1 we demand that ua(x)
satisfies the resonant differential equation and obtain for the arbitrary constants and for the particular
solution ug(x) the following formulas:

3 1
=3, 61:Za

8
ug(x) = 2zuy(x) — 2ug(x) 4+ ho(z) =
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= —2x0(x) + 2zx1(x) + (xz + i) Vrerfi(z) — zexp (2?).

Thus, we have a particular solution in the form

un () = ~2Hp-2(2)x0(2) + pu(2)x1(2) + gn(x) V/rerfi(z) + vn(z) exp (2?) (2.17)

where the polynomials p,(x) satisfy the recurrence equation for the Hermite polynomials with the
initial conditions po(z) = 0, p1(x) = 1, the polynomials g, (x) solve the initial value problem

Gnt+1(2) = 22q,(2) — 2ngn—1(x) + Hp—1(z), n=1,2,...,

and the polynomials v, (z) solve the discrete problem

Unt1(z) = 220, () — 2nUp—1(x) + pp—1(x), n=1,2,...,

The particular solutions u,(z) of the Hermite resonant equation of the second kind satisfy the
resonant differential equation by construction for n = 0, 1,2. The next theorem shows that it is the
case foralln=0,1,2,....

Theorem 2.2. The functions u(z) obtained by the recursion (2.17) with the initial conditions
ug(z), k = 0,1, given by (2.16) satisfy the resonant Hermite differential equation of the second kind
forall k=3,4,....

The proof is completely analogous to the one of Theorem 2.1 if we take into account that the
Hermite functions of the second kind (which are not polynomials!) satisfy the same recurrence
equation as the Hermite polynomials and the same differentiation formula.

3. Resonant equation of the Laguerre type. 3.1. The Laguerre resonant equation of the
first kind. In this section we consider the following equation of the Laguerre type:

d*u(x) du(x)
dx? dx

+(14+a—2) +nu(x) = L(x), (3.1

where

Ly (z) = {at D O(—n,a+ 1,2) = ; <n + a) (=)

! k!
. — .

is the Laguerre polynomial satisfying the homogeneous differential equation corresponding to (3.1).
This polynomial can be represented through the confluent hypergeometric function (i.e., through the
solution of a confluent hypergeometric equation, which is a degenerate form of the hypergeometric
differential equation when two of the three regular singularities merge into an irregular singularity)
[1, p. 189] (formula (14)). Since the Laguerre polynomial solves the homogeneous equation, the
inhomogeneous equation (3.1) is resonant.
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RESONANT EQUATIONS WITH CLASSICAL ORTHOGONAL POLYNOMIALS. I 461

The second linear independent solution of the homogeneous differential equation is the Laguerre
function of the second kind [7, p. 16, 20]. Solving the corresponding differential equation by Maple
we obtain the following representation of the Laguerre function of the second kind for non-integer o:

lh(z) =271 Fi(=n—o;—a+ L) = T(1 - a,—z) L5 () — (—2)"py(z) exp(z),

1 [(Qn—i—oz—l—l—:v)pg(m)—(n—l—a)pf{_l(x)], n=12,..., (3.2)

pg+1($) =

po(z) =1, pf(z)=1-uz,

where
o

I'(a,z) = /ettaldt

z

is the incomplete Gamma function. For non-negative integer o we have
Iy () = Bl (=) Ly () — (—2)”“pl(x) exp(),

« y, y>0,
pi(a) ==+ (p—Dia—p+1)4a®?,  (y)y =
V% 1 O) y S 07

po(x) =2t 4 2 [U(2,2, —x) + (-1)*U(1 + o, 1 + a, —z)] = Zmo‘fp(p -1,

where
oo

—t
Biy(2) = / it |A(a)| <

z

is the exponential integral, and U (a, b, z) is the Kummer’s function of the second kind. The last one
is a solution of the Kummer’s differential equation

d*w dw
z@—i—(b—z)%—awzo.

The other linear independent solution is the Kummer’s function of the first kind M defined, e.g., by
a generalized hypergeometric series:

(a,b,z) Z b )n' =1F1(a;b; 2),

where ag) =1, a@,y = ala+1)(a+2)...(a+n — 1) is the Pochhammer symbol. The Kummer’s
function of the second kind can be represented as

(1 - b)

r'(b-1)
I'(a+1-0)

Ula,b,z) = Ta)

M(a,b,z) + AMa+1-0,2-0,2).
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Let fY(z,z) = Zoo o 2"p%(x) be the generating function for the polynomials p%(z) for both
n=
non-integer and integer non-negative «, then multiplying the the second equation (3.2) by 2" and
summing up over n we obtain the Cauchy problem

(1= 2P 2 0 = lo+ 1 -2 — 21 + )] J° (2 2)+

+ (1+22%) pf(z) — (a+ 1 —2)pf(z), [(0,2) = p§(z),

with the solution

o0

Zzpn 1—z)a1exp<zx1>x

n=0

{ [ (@ + 1)) + (a+ - 2)pl)) ¢~ ) e () e+
0

+ (=17 (@) exp(w)}-

In particulary, for o = 0, we have

Trz

FOzz) = (1—2)" 43— z) exp (Z = 1) +(1—2)" Yz —1)(z —3)exp (z - 1) X
X {—Eil(—:n) +Eiy (—Zfl>}+z—x+3,

1 Tz
fl(zx) (1_2)2(x2_5x+2)(1—a:)3exp( )+

for « = 1, we obtain

+(1—2)72 (2P — 72 + 122 — 3) g exp <zf1> {—Eil(—x) +Ejp <—z:”_1> } .

_3<21_1> [ = (2 +6)2” + (22° + 32 + T) & — 22° — 22 +1] .

For a = 1/2, it holds

Y2 (z,2) = —(2—1)"3 % exp <zx—zl> X

x expé—w)o/z [1+i1/(;0_;11)t2} exp <tf1>dt+1
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RESONANT EQUATIONS WITH CLASSICAL ORTHOGONAL POLYNOMIALS. I 463

The general solution of the homogeneous Laguerre differential equation is given by
u(x) = 1 L3(x) + ol ()

with arbitrary constants c;, co. Due to Theorem 3.1 of [4] a particular solution of the Laguerre
resonant differential equation of the first kind

d?u, (x) duy ()
1-— v = v = o(-n 1,
@2 T g tvule) = Lie) =&~ 1)
is given by
d 00 IEk p—1 1
uy(l’) = E @(_V, 1,1:) —_— ; (]{;')2 (_V)klz; .y + i)

where ®(a,c;x) is the confluent hypergeometric function [1] (Ch. 6). Changing here v € R to
n € N we obtain the resonant Laguerre equation and the corresponding particular solution

"2k d(—v
un(@) = (k1)2 (dy)k
k=1

x 1
— (1D e = )+ wae). (3
Using the relation
1 - . n —1)
=y = (3.4)
we transform the sums w1 (), un,2(x) to a shapes, which can be computed in closed form, e.g., by

Maple and we get

uo(e) = — [Eir(=2) + In(=z) + 1],

ui(z) = —Li(z)up(z) — exp(x) + 1 + x,

1 3
ug(x) = —La(z)ug(x) + 3 (x — 3)exp(z) — 1 ? + 1z + ok
11

1
ug(x) = —La(x)up(x) + 8 (=% + 8z — 11) exp(x) + kil 2302 + 5% + 5

ug(x) = —La(z)ug(x) + i (z® — 152® + 58z — 50) exp(z)—

25 4 n 19 4 7 4, 1 n 25
——zt =z’ -z -+ =
288 18 4 3 12’
where v = 0.5772156649 . . . is the Euler’s constant. Having in mind to obtain a closed form of the

sum uy 2(x), we note that

() - o exp() o 1i—1—p
v (x) = Z m =T w(w) — i pr’v -
p=n+1 p=0

ISSN 1027-3190. Ykp. mam. scypn., 2019, m. 71, Ne 4



464 1. GAVRILYUK, V. MAKAROV

n—i—1 n—p ;i1 i—1
x T 1 P
- Y Y
_ | o — | (7 —
= (n=pln—p—1) i mpt+l =pl(i —p) (3.5)

w(z) = Eiy(—z) + In(—x) + .

Then from (3.3)-(3.5) we have

tn2(x) = —(=1)"nt Y- alolVi () = 3 (1) G () =
=0 1=0
o (=)l (n —i—1—p)!
= Lp(z)w(z) —exp(x) Y aP Z M= )2 +

where

The technique presented above for o = 0 is even more cumbersome in the case « # 0. This is
why below we use our recursive algorithm for the particular solutions in order to be able to write
down the general solution of the Laguerre resonant equation (3.1) in the form

u(z) = e1Lip () + calyy () + un(2),

with arbitrary constants ¢y, ca.
Differentiating the recurrence equation for the Laguerre polynomials by n and using Theorem 3.1
of [4] we obtain for the particular solutions the recurrence formula

Znt+a+l-=x n+a
U1 (z) = n—Hug(ﬂﬁ) I n—1(@)+
a—1—x a—1
Tt L@ e bale), n=12 (3.6)

with the corresponding initial conditions. For example, in the case v = 1 we have

wbfw) = -~ @), wl() = @ - ouhe) ~z -

and the following representation of the particular solution of the resonant equation

un () = L} (2)up(x) + gu(x) (m + ;) + vp ().
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RESONANT EQUATIONS WITH CLASSICAL ORTHOGONAL POLYNOMIALS. I 465

Here the polynomial g, (x) satisfies the recurrence equation for the Laguerre polynomials with the
initial conditions
vo(z) =0, wvi(z)=-1.

The polynomial v, (x) solves the difference problem

2n+2—zx T
Ui+1(~’”) = WU}L@) - U}L—1($) YAV ) Lk(ﬂf% n=12...,
3.7

vi(x) =0, wvi(z)=0.
For an arbitrary @ due to Theorem 3.1 of [4] we have a particular solution

d d  T(a+1+v)
(6% :_7[/01 :_@ _ 1 I
unlw) == g, bo(@) (mat L) e T £ 1)

v=n v=n

F'a+14n) d
- LB vat1;
Tlat )T +1) av Tt L)

I
v=n

from where we obtain the following particular solutions for n = 0, 1:

X
= F5(1,1;2,2 ;
XO(m) a+1 2 2( y Ly 4y +Oé,l'),

x1(x) =z 9F5(1,1;2,2 4+ ;) — oF5(1,1;2,3 4+ a; ).
o

+2

With the aim to obtain from the recurrence formula solutions of the resonant differential equation we
use the ansatzes

ug () = xo(x) + o, ui(x) = xa(x) + el ()
with undefined coefficients ¢y, c;. Substituting these into (3.7) and demanding, that the particular
solution u{(x) satisfies the resonant differential equation we get

a(3a +5) .«
2a+@+2) T 2atr2)

Cco = —

Now, the initial values for the recursive algorithm for the particular solutions become to

a(3a+5)
20+ 1) (a+2)’

T
uf(@) = =

1 2F2(1,1;2,2+a;x)—

(3.8)
a
2(a+2)

2Fp(1,1;2,3 + asz) —

uf(z) =x 2F»(1,1;2,2 + a5 x) — ax Lo (2).

+2
The next assertion shows that the functions u(z) generated by recursion (3.6) with the initial
values (3.8) satisfy the Laguerre resonant differential equation of the first kind forall n = 0,1,2,....
Theorem 3.1. The functions ul(x) generated by the recursive algorithm (3.6) with the initial

values (3.8) are particular solutions of the Laguerre resonant differential equation of the first kind
foralln=20,1,2,....
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466 1. GAVRILYUK, V. MAKAROV

Proof. We prove the assertion by the mathematical induction. First of all we note that the
functions u(x) for n = 0,1,2 are the particular solution due to their construction. We assume
that all functions uy(x), p = 0,1,...,n, are particular solutions and prove that then ug, () is a
solution too.

Actually, the application to the both sides of (3.6) of the Laguerre differential operator

1 = d—2+( +1- )i+ +1
ntl = P e T VT

and the induction assumption provide

2 du&
A0 (2) = L) + o (@) — 2 P (g gy (2)] -
2 (0% (0%

Further we use the relation (see, e.g., [8], § 10.12)

d L% (x)
dx
Differentiating this relation by n and using Theorem 3.1 of [4] we see that the both square brackets

in (3.9) are equal to zero and herewith the assertion is proven.
The general representation of the particular solutions is

x =nly(x) = (n+ )Ly (2).

ud(z) = pi(x) 2 F5(1,1;2,2 + ;) + q5 (x) 2F»(1,1;2,3 + as ) + vl (z), n=2,3,...,

where the polynomials p&(z), ¢S (x) satisfy the classical Laguerre recurrence equation with the initial
conditions

) p(lx(x) =,

1‘2

f(x)=0 MNr) = ——+
90 ( ) ’ q1 ( ) a+ 27
respectively. The polynomials vS (x) satisfies the inhomogeneous recurrence equation

n-+aoa
n+1

_Znta+l-—x

U%H(Jf) - o+l vy () —

Vp—1(2)+

1
a L2 (z), n=12,...,

a—1—-z
L (x)—m n

ERCES
with the initial conditions
a(3a + 5)

Ug(x):_Q(Oé—f—l)(Oé—FQ)’ U?(.T):

_ala+1-—1z)
2(a+2)

3.2. The Laguerre resonant equation of the first kind (revisited). In this section we consider
again the resonant Laguerre differential equation of the first type (3.1) and show that the particular
solutions can be represented by elementary functions only.
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We know that one of the linear independent solutions of the homogeneous differential equation
is the Laguerre function of the second kind [7, p. 16, 20]. Solving the corresponding differential
equation by Maple we obtain the following representation of the Laguerre function of the second
kind for non-integer «:

(x)=2"“1Fi(-—n—a,—a+ L;z2) =T(1 - a,—2)L;(z) — (—x) *pi(z) exp(z),

o 1 o o
pn+1(x) = m [(2n+ a+1l-— Hﬁ)pn(.T) - <TL+ a)pn—l(x)] y = 1727 SRR

pi(x) =0, pi(z)=1-=

For non-negative natural « € N we have
Ly () = Eir (=) Ly () — (—2)"pi(x) exp(2),
p2i(z) = (@ = 1), (3.10)

py(x) = 2 M 4 2 [U(2,2, —2) + (—=1)*U(1 + o, 1 + o, —2)] .

Note that the function at the second initial condition in (3.10) solves the following difference
initial value problem:

po (x) = xpg~ 1(:6)—}—(04—1)!, a=12,..., pg(x):().

Using Theorem 3.1 of [4] we can represent the particular solutions of the Laguerre resonant
equation of the first kind by

1 n+1
un(m)_(n)!aay U(-v,1+a,-z),_,, n=01....

This representation provides the particular solutions

a—1
ug(r) = —In(x +Z (@ = pper

Xo () = (p+ 1)artl’
p=
X1 (z) =w(z) = —L{(z +Z :cp ;
where

a—1
karl( ) kap(Z), p:1727 ,Oé—l,

i=1

1
kl(a):M kola) = —ax—2, a=2,3,....

2 )
At the first step of Algorithm 3.1 of [4] we use the ansatzes
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ug (2) = xg(z) + coLg (z) + do LY (),

uf (z) = X7 (2) + 1Ly (z) + di L (x)

with undefined coefficients cg, do, c1, di, substitute them into (3.6) with n = 1, obtain u§(x) and
choose ¢y, dy, c1, di so that u§(z) satisfies the resonant differential equation. We get dy = 0,
di=0and c; =1+ ¢p.

Now one can prove that

u8i(x) = — L8 (x) In(x) + P2

xO&
where the polynomials pS(z) satisfy the recurrence equation
n+a+l-z n -+«

Phyi() = n——klpg(w) T T Ph-1(®)+

a—1—=x a—1

— L) — —— L =12,...

+ (n+1)2 n(x) (n+1>2 n—l(m)’ n ) <y )
with the initial conditions
a-l o p-1 a
x o —
() = Pt e, ) = 3D e k() + (14 @)a L),

p+1

=3
Il
o

3.3. The Laguerre resonant equation of the second kind. In this subsection we consider the
resonant equation

d*u(x)
dx?

where [%(x) is the Laguerre function of the second kind given by (3.2).
Due to Theorem 3.1 of [4] the formula

+(1+a—x)

du(x) _a
. + nu(x) =I5 (x), (3.11)

d

defines a particular solution of (3.11), so that its general solution is given by
u(z) = 1 LY (x) + el () + up(z).

The use of formula (3.12) for arbitrary n is rather burdensome, therefore we use Algorithm 3.1
of [4], where we for the sake of simplicity set & = 0. Solving differential equation (3.11) with Maple
forn =0, n =1 we get

t
Xo(z) = /exp /E11 ) exp(—&)d¢ dt,
1

(3.13)

xi(2) = [(1 — 2)Eir (~) — exp(a / 1+ Eip(~€)(—1 + &) exp(—€)] (—1 + €)de+
1
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T

<+j/exp0—£HEh(—£X—4-+£)+fmp(—€ﬂ2d50—14-w)

1

As the ansatzes for initial values of our algorithm we use
ud(z) = xo(z) + coEir(—z) + do,  ud(z) = x1(x) + c1ld () + di LY () (3.14)

with undefined constants cy, dg, c1, di. Differentiating the recurrence equation for the Laguerre
functions of the second kind by 7 in regard of (3.12) we obtain the following recurrence relation for
particular solutions:

_2n+l—-2 no g 1+z 1 0

Up 41 (z) = ol Up () — 1 Up_q(T) — e ln(z) + nt 1) lp1(z).  (3.15)

We substitute (3.14) into this equation with n = 1 and demand that the obtained function u9(x)
satisfies the resonant differential equation (3.11) with n = 2, then we obtain

¢o = —~Eii(~1)exp(~1) — 1, dy = —[Eir(~1) exp(~1/2) + exp(1/2))%,
(3.16)
c1 = 0, d1 =0.

Analogously to Theorem 3.1 the following assertion can be proven.

Theorem 3.2. The functions ul(x) generated by the recursive algorithm (3.15) with the initial
values (3.14) with the constants given by (3.16) are particular solutions of the Laguerre resonant
differential equation of the second kind for all n = 0,1,2,....

It can be proven by substitution into (3.15) that the following representation holds true:

un () = pp(2)X1() + g (2)x0(2) + v (2)Bir () + wy (x) exp(2) + g, (2)do, (.17)

where the polynomials pY(z), ¢°(z) satisfy the recurrence relation for the Laguerre polynomials
with the initial conditions

py(z) =0, pl)=1, ¢lx)=1 q¢dx)=0.

The polynomials wl(x) satisfy the inhomogeneous recurrence relation for the Laguerre polynomials

2n+1—=x n
w1 () = T il wp () — 1 (@)
1+2 1 0
T 12 o =1,2,...
(n+1)2 pn('r)—i_ (n+1)2 pn71<m)7 n ) )

with the initial conditions

Here p! () are the same polynomials as in (3.17).
The polynomials v2(z) solve the following discrete initial value problem:

_2n+1—x 0 n

(@) = o) — o

I+2
RS

Ug—l(f’?) -
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1
+(n+1)2 O [(z), n=1,2,...,
% — 2¢o
W} (x) =0, vg(l‘)zT

Below we give some particular solutions of the Laguerre resonant equation of the second kind
obtained by our algorithm:

U/g(.f(,') = X()(l') + COEil(—.%') + d07 U?(.T) = Xl(x)v

x—3 1 22— 2¢c . | 1
Xo(z) + TO Eiy(—x) —

1, 11, 23 1 1 5
+<24:): — ¥ —72x—72>exp(x)+(6x—6>do,

where cg, dy are given by (3.16) and xq, x1 — by (3.3).
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