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EXISTENCE RESULTS FOR DOUBLY NONLINEAR PARABOLIC EQUATIONS
WITH TWO LOWER ORDER TERMS AND L'-DATA

PE3YJIBTATHU ITIPO ICHYBAHHS PO3B’SI3KIB JBIYI HEJTHIHHNUX
MHHAPABOJIITYMHUX PIBHSAHB 3 IBOMA YWIEHAMUN HUKYOI'O MMOPAAKY

TA L'-JAHUMU

We investigate the existence of a renormalized solution for a class of nonlinear parabolic equations with two lower order

terms and L'-data.

BuB4aetbcst mpobiiemMa iCHyBaHHSI IIEPEHOPMOBAHOTO PO3B’SI3KY JUISl KJIacy HENIHIHHMX IapaOoidiyHuX pIBHSAHB 3 JBOMA
YleHAMH HMYKYOTO TOPAAKY Ta L' -manumu.

1. Introduction. We consider the following nonlinear parabolic problem:

ab(gt’u) —div(a(z,t,u, Vu)) + g(z,t,u,Vu) + H(z,t,Vu) = f in Qr,
b(z,u)(t = 0) = b(x,up) in Q, (1.1)

u=0 on 00 x(0,7),

where (2 is a bounded open subset of RY, N > 1, T'> 0, p > 1 and Q7 is the cylinder Q x (0,7).
The operator —div(a(z,t,u, Vu)) is a Leray—Lions operator which is coercive and grows like
|Vu|P~! with respect to Vu, the function b(z, u) is an unbounded on u, and b(z,ug) € L'(2). The
functions g and H are two Carathéodory functions with suitable assumptions see below. Finally the
datum f € LY(Qr).

The problem (1.1) is encountered in a variety of physical phenomena and applications. For
instance, when b(z,u) = u, a(x,t,u,Vu) = |VulP™2Vu, g = f = 0, H(x,t,Vu) = A\Vul,
where ¢ and A are positive parameter, the equation in problem (1.1) can be viewed as the viscosity
approximation of Hamilton —Jacobi-type equation from stochastic control theory [18]. In particular,
when b(z,u) = u, a(z,t,u,Vu) = Vu, g = f = 0, H(z,t,Vu) = A\|Vu|?, where ) is positive
parameter, the equation in problem (1.1) appears in the physical theory of growth and roughening of
surfaces, where it is known as the Kardar — Parisi — Zhang equation [14]. We introduce the definition
of the renormalized solutions for problem (1.1) as follows. This notion was introduced by P.-L. Lions
and Di Perna [12] for the study of Boltzmann equation (see also P.-L.. Lions [17] for a few applications
to fluid mechanics models). This notion was then adapted to an elliptic version of (1.1) by Boccardo
et al. [9] when the right-hand side is in W*Lp/(ﬂ), by Rakotoson [24] when the right-hand side
being a in L!(Q), and by Dal Maso, Murat, Orsina and Prignet [10] for the case of right-hand side
being a general measure data, see also [19, 20].

For b(z,u) = v and H = 0, the existence of a weak solution to problem (1.1) (which belongs to

N+1)—N
L™(0,T; Wolm(Q)) with p > 2 — and m < u was proved in [8] (see also [7])

N+1 N+1
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where g = 0, and in [23] where g = 0, and in [11, 21, 22]. When the function g(z,t,u, Vu) = g(u)
is independent on the (x,t, Vu) and ¢ is continuous, the existence of a renormalized solution to
problem (1.1) is proved in [5]. Otherwise, recently in [1] is proved the existence of a renormalized
solution to problem (1.1) where the variational case.

The scope of the present paper is to prove an existence result for renormalized solutions to a
class of problems (1.1) with two lower order terms and L'-data. The difficulties connected to our
problem (1.1) are due to the presence of the two terms g and H which induce a lack of coercivity,
noncontrolled growth of the function b(x, s) with respect to s, the functions a(x,t,u, Vu) do not
belong to (LL _(Qr))" in general, and the data b(z,uo), f are only integrable.

The rest of this article is organized as follows. In Section 2 we make precise all the assumptions
on b, a, g, H, ug, we also give the concept of a renormalized solution for the problem (1.1). In
Section 3 we establish the existence of our main results.

2. Essential assumptions and different notions of solutions. Throughout the paper, we assume
that the following assumptions hold true. Let € is a bounded open set of RV, N > 1, "> 0 is
given and we set Q7 = Q x (0,7), and

b: 2 xR — R isa Carathéodory function,

such that for every = € €2, b(x,.) is a strictly increasing C'!-function with b(x,0) = 0. Next, for any
k > 0, there exists Ay, > 0 and functions Ay € L*°(Q2) and By € LP(2) such that

ne< P8 < pyw) e ‘w(a”(gz 5)>‘ < By(x), @1
0b(x, s) .
for almost every x € €, for every s such that |s| < k, we denote by V,, s the gradient of
b
? g’ 5) defined in the sense of distributions.
S
Let a: Qr x R x RV — R be a Carathéodory function, such that
|a(z,t,5,€)| < Bk(z, 1) + |sP~H + €771, (22)

for a.e. (z,t) € Qr, all (5,£) € R x RV, some positive function k(x,t) € Lp/(QT) and 8 > 0,
[a(a,t,5,€) —a(a,ts,m)] (€ —n) >0 forall (&) e RV xRY, with ¢#n,  (23)
a(z,t,s,£)§ > o|€|P, where « is a strictly positive constant. 2.4

Furthermore, let g(x,t,5,&): Qr x R x RY — R and H(x,t,&): Qr x RN — R are two
Carathéodory functions which satisfy, for almost every (z,t) € Q7 and for all s € R, £ € RY the
following conditions:

|g($,t,8,€)’ < Ll(‘s‘)(LZ(xvt) + |£|p)’ (25)
9(x,t,5,8)s =0, (2.6)

where L;: RT™ — R* is a continuous increasing function, while Ly(z,t) is positive and belongs to

LY(Qr),
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>0, v>0 V|s|>0: }g(:z:,t,s,f){ > v|€|P, 2.7
|H(z,t,8)| < h(z,t)|¢[P~", where h(z,t) is positive and belongs to  LP(Qr). (2.8)
We recall that, for k£ > 1 and s in R, the truncation is defined as 7} (s) = max(—k, min(k, s)).
We shall use the following definition of renormalized solution for problem (1.1) in the following
sense.

Definition 1. Let f € LY(Q7) and b(-,uo(-)) € L*(Q). A renormalized solution of prob-
lem (1.1) is a function u defined on Qr, satisfying the following conditions:

Ti(u) € LP(0,T; Wol’p(Q)) forall k>0 and b(z,u)e L>(0,T; Ll(Q)), (2.9)

a(z,t,u, Vu)Vudrdt -0 as m — 400, (2.10)

{m<ul<m+1}

335;9(;‘,20 —div (S/(u)a(x, t,u, Vu)) + 8" (w)a(z,t,u, Vu)Vu +
+ g(x, t,u, Vu)S' (u) + H(z,t,Vu)S' (u) = fS'(u) in D'(Qr), (2.11)

for all functions S € W?>°(R) which are piecewise C'(R), such that S’ has a compact support in
R and

Bs(xz,u)(t =0) = Bs(z,ug) in €, where Bg(z,z) :/
0

ob(z, )
or

S'(r) dr. (2.12)

Remark 1. Equation (2.11) is formally obtained through pointwise multiplication of (1.1) by
S’(u). However, while a(x,t,u, Vu), g(x,t,u, Vu), and H(x,t,Vu) does not in general make
sense in D'(Qr), all the terms in (2.11) have a meaning in D' (Q7).

Indeed, if M is such that supp S’ C [—M, M], the following identifications are made in (2.11):

|Bs(z,u)| = |Bs(z, Tar(w))] < M||S"|| oo (r)Ans () belongs to L>°(€2) since Ay is a bounded
function;

S'(u)a(z,t,u, Vu) identifies with S’(u)a(z,t, Tar(u), VIn(u)) a.e. in Qp; since [Thr(u)] <
< M ae.in Qr and S'(u) € L*°(Qr), we obtain from (2.2) and (2.9) that

' (w)a(x,t, Tar(w), VT (w)) € (L (Qr))";

S"(u)a(z,t,u, Vu)Vu identifies with S”(w)a(z,t,Tar(u), VI (u)) VT (u) and S”(w)a(z,
t, Tar (), VT () VT (u) € LYQr);
S’ (u) <g(x, t,u, Vu) + H(z,t, Vu)> identifies with S’(u) (g (z,t, Tar(u), VT (u)) + H(z,t,

VTM(u))> a.e. in Qr; since |Ths(u)| < M a.e. in Qr and S'(u) € L>=(Q7), we obtain from (2.2),
(2.5), and (2.8) that

S’ (u) (g(x,t,TM(u), VTM(u)) + H(z,t, VTM(u))) € Ll(QT);
S'(u)f belongs to LY(Q7).
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The above considerations show that (2.11) holds in D'(Qr) and

aBsa(f’“) e LP (0, T; W= P(Q)) + LY(Q7). (2.13)
The properties of S, assumptions (2.1) and (2.10) imply that
IVBs(z,u)| < | An]l 1o ) |V T () |15 oo ) + M S| oo (r) Baa () (2.14)
and
Bs(z,u) belongsto LP(0,T;WyP(Q)). (2.15)

Then (2.13) and (2.15) imply that Bg(x,u) belongs to C°([0,T]; L*(£2)) (for a proof of this trace
result see [21]), so that the initial condition (2.12) makes sense.

Also remark that, for every S € W1°°(IR), nondecreasing function such that supp S’ C [—M, M],
in view of (2.1) we have

ulS(r) = S()| < | Bs(a, ) = Bs(a.1')| <

< N Amllzoe () S(r) — S|, ae. xe€Q, Vrr'eR.

3. Statements of results. The main results of this article are stated as follows.

Theorem 1. Let f € LY(Qr) and ug is a measurable function such that b(-,ug) € L'(f2).
Assume that (2.1)—(2.8) hold true. Then there exists a renormalized solution u of problem (1.1) in
the sense of Definition 1.

Proof. The proof of Theorem 1 is done in five steps.

Step 1: Approximate problem and a priori estimates. For n > 0, let us define the following
approximation of b, f and ug.

1
First, set b, (x,r) = b(x, T, (1)) + —rby, is a Carathéodory function and satisfies (2.1), there exist
n

b (z,
An, > 0 and functions A, € L>*(Q2) and B,, € LP(Q2) such that \, < 88@8) < A, (z) and
s
vq}(@bna(x,s))’ < Bp(z), ae. in 2, s € R.
s
Next, set
t H(x,t
gulot,5,6) = — S0 and  Hy(a,t,€) = — b8

Note that |gn (2, t,5,&)| < max {|g(z,t,s,&)|;n} and |Hy(z,t,€)| < max {|H (z,t,£)|;n}. More-
over, since f, € L” (Qr) and f, — f a.e. in Qr and strongly in L' (Qr) as n — oo,

uon € D(Q), bo(z,ugn) — b(z,ug) ae.in Q andstronglyin L'(Q) as n — oco.
(3.1)
Let us now consider the approximate problem
bn (2, up . :
8((;;u) —div(a(z,t,un, Vun)) + gn(x,t,un, Vuy) + Hp(x,t,Vu,) = f, in  Qr,
b (2, un)(t = 0) = by(z,u0,) in €, (3-2)

u, =0 in 9Q x (0,7).
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Since f, € LV (0, T; W_l’p,(Q)), proving existence of a weak solution u, € LP(0,T; Wol’p(Q))
of (3.2) is an easy task (see, e.g., [16, p. 271)), i.e.,

T
bn ) Un
/<8(gtu),v> dt+/a(m,t,un,Vun)Vvda:dt+
0 Qr
+/gn(x7t’unavun)vdl‘dt+/Hn(l”t’vun)vdmdt:
Qr Or

= /fnv dx dt forall v e Lp((),T; lep(Q)) N L=(Qr).
Qr

Now, we prove the solution u,, of problem (3.2) is bounded in L? (0, T’; W, P (Q)).

Lemma 1. Let u, € LP(O,T; Wol’p(ﬂ)) be a weak solution of (3.2). Then the following
estimates hold:

Hun”Lp (O,T,Wol’p(Q)) S D7 (33)

where D depend only on Q, T, N, p, p', f, and ||h|Lr(q)-
Proof. To get (3.3), we divide the integral / |Vu,|P dxdt in two parts and we prove the

following estimates: for all £ > 0, ’

\Vun|” dodt < Mk, (3.4)
{lun|<k}
and
|Vu,|” dodt < Ms, (3.5)
{lun|>k}
where M7 and M> are positive constants. In what follows we will denote by M;, ¢ = 3,4, ..., some

generic positive constants. We suppose p < N (the case p > N is similar). For ¢ > 0 and s > 0,
we define
sign(r) if [r|>s+e,

sign(r)(|r| — s)
€
0 otherwise.

Pe(r) = if s<|r|<s+e,
We choose v = ¢, (u,,) as test function in (3.2), we have

T

/Bge(:r,un) dr| + /a(x,t,un,Vun)V(%(un))dacdt +
Q 0 Qr
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+/gn(x,t,un,Vun)cps(un)d:ndt+/Hn(:v,t, V) pe(uy) de dt =
Qr Qr

= /fn%oa(un) dzx dt,
Qr

where

r

n Oby,(z, )
B} (z,7) —/88%(3) ds.
0

By using B} (z,7) > 0, gn(z,t, un, Vun)p:(un) > 0, (2.4), (2.8), Holder inequality and letting
€ go to zero, we obtain

d

s / a|Vu, [P dedt <
s

{s<|unl}
+o0 J P p o
< / | fr| do dt + / - / hP dx dt - / |\Vuy|Pdxdt | do,
do do
{s<lunl} s {o<|unl} {o<lunl}

where {s < |un|} denotes the set {(z,t) € Qr,s < |un(z,t)|} and p(s) stands for the distribution
function of uy,, that is u(s) = [{(z,t) € Qr, |un(z,t)| > s}| forall s > 0.

On the other hand, from Fleming— Rishel coarea formula and isoperimetric inequality, we have,
for almost every s > 0,

1
NCF (u(s)) ¥ < —— / |V, |Pdx dt, (3.6)
S

{s<|unl}

where C is the measure of the unit ball in R". By using the Hélder’s inequality, we obtain that,
for almost every s > 0,
P
d 1 d

I / [Vup|P dzdt < (=4 (s)) 7 s / |Vuy|Pdxdt | . (3.7

{s<|unl} {s<|unl}

Then, combining (3.6) and (3.7), we obtain, for almost every s > 0,

P

) ! +-1 / 4 d
1< (NOF) @) W) g [ Vupdsat | (8)
{s<lunl}
By using (3.8), we have
i/
p
d
al —— / [VupPdedt | <
ds
{s<lunl}
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< (NeF) @) T w7 [ sl +
{s<|unl}

S

H(NOF) () ¥ (H9) ¢

+o00 p v
d d
X / - / hP dx dt — / |Vuy,|P dx dt do. 3.9
do do
s {o<|unl} {o<lunl}

Now, we consider two functions B and v (see Lemma 2.2 of [2]) defined by

w(s)
hP(x,t) dedt = /Bp(a)da (3.10)
{s<]unl} 0
and
P(s) = / | fn] dz dt. (3.11)

{s<|unl}

We have HBHLP(O,T;WOLP(Q)) < HhHLP(O’T;W&me and [¢(s)] < ||fnllz1(@p)- From (3.9), (3.10),
and (3.11) we get

d

- / \Vu,[Pdedt | <

{s<|unl}

= (Ncﬁ)_ (1(9) ™ (=4 (5)) " 1b(5) + (Ncﬁ)_l(u(s))%‘lx

<) [ Bue) R |~ [ | an

$ {v<l|unl}
From Gronwall’s lemma (see [3]), we obtain

1
P’

a ;i / |Vup|Pdedt | <
{s<|unl}
S <NC]§> 1 (n(s)) ! (—#'(s)) iT/J(S) + (N(Yﬁ)f1 (1(s)) vl
+oo
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X exp /(NC&IV)_lB(u(r))(M(r))flv_l(—u’(r))dr do. (3.12)

Now, by a variable of change and by Holder inequality, we estimate the argument of the exponential
function on the right-hand side of (3.12):

(o} o

B ) 7 e ar = [Ba)t e <
ol o v
< [ B(z)zvdz < |B||»| [ 2307
/ /

Raising to the power p’ in (3.12) and we can write

_4 / |Vuy|Pdedt < M,
ds

{s<unl}

where M depend only on Q, N, p, p', f, a, and ||h|[1s(q,), integrating between 0 and k, (3.4) is
proved.
We now give the proof of (3.5), using T (u,) as test function in (3.2), gives

T
/B};”(:):,un) dx —i—/a(x,t, Up,, Vg ) VT (uy) do dt+
Q 0 Q

+/(gn(:1:, tyun, Vuy) + Hy(x,t, Vuy,)) Tk (uy,) doe dt =
Q

- / JuTi(un) da dt,
Q

where
,

By (z,r) —/%néasmTk(s) ds.
0

By using (2.8), we deduce that
T

/Bg(x,un) de| + / a(x,t, up, Vup)Vuy, de dt+
Q 0 {lunl<k}

+ / In (2, t, Up, Vg )uy, de + / gn(x, b, Up, V) Ty (uy) dodt <
{lun|<K} {lun|>k}

< /fnTk(un) dx dt + /h(a:,t)Vunp1|Tk(un)\ dx dt,
Q Q
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and by using the fact that B}'(z,7) > 0, gn(z,t, un, Vuy)u, > 0 and (2.4), we have

o / [Vup|? do dt + / 9(2, U, V) Ty (uy) da dt <
{lun|<k} {|un|>k}
<kl +k [ b0 TP dde +
{Jun| <k}
+ k / h(z,t)|Vun|P~t dz dt.
{Jun|>k}

By Hoélder inequality and (3.4), (2.7) and applying Young’s inequality, we get, for all k > 9,

vk / |Vu,|Pdxdt <

{|un|>k}
1
< K| flot@m + K7 M|l oo + & / B, )| V[P dedt <
{|un|>k}
14+ 1
< kI lzriar) + K7 Mallzngy) + Mokl + vk / Vun P da dt.
{lun|>k}

Hence,

1 1
<1 Y / \Vun|P do dt < M3 fllpgqp) + k7 Ms||hllery + Mzl|hll},. (3.13)
{Jun|>k}

Lemma 1 is proved.
Then there exists u € LP (0, T, VVO1 P (Q)) such that, for some subsequence

u, —u weakly in  LP(0,T; W, ?()) (3.14)

we conclude that

| T (un < cok. (3.15)

)Hipw,ﬂwg”’(m)

We deduce from the above inequalities, (2.1) and (3.15), that

/B,?(:J;,un) dx < Ck, (3.16)
Q

where B (z,z) = / MTk(s) ds.
0 0s

Now, we turn to prove the almost every convergence of w, and b,(x,u,). Consider now a
k
function nondecreasing & € C%(R) such that & (s) = s for |s| < 5 and & (s) = k for |s| > k.
Multiplying the approximate equation by & (u,), we obtain
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OB{ (z, up)

5 —div (a(w, t, Uy, Vun)&;(un)) + a(x, t, un, Vup)Ep (un) Vg, +

+ (gn(xa ta Un, Vun) + Hn(l‘a tv vun))gllf(un) =
= fngllc(un)v (3.17)

in the sense of distributions, where

z

B{(z, 2) —/(%néj’s) () ds.
0

. ) 1,p aBQ (x, un)
As a consequence of (3.15), we deduce that & (u,,) is bounded in L? (0, T'; W, (€2)) and —

is bounded in L*(Qr) + L (0, T; W% (£2)). Due to the properties of & and (2.1), we conclude
0 / / S
Sk un) is bounded in L' (Qr) + L¥ (0,T; W17 (), which implies that & (uy) strongly
converges in L'(Qr) (see [21]).
Due to the choice of &, we conclude that for each k, the sequence T (uy) converges almost

everywhere in @7, which implies that u,, converges almost everywhere to some measurable function
u in Qp. Thus, by using the same argument as in [4, 5, 25], we can show

that

Up, — u  a.e.in  Qr, (3.18)

bn(z,uy) = b(z,u) ae. in Qp.
We can deduce from (3.15) that
Ti(un) — Ti(u) weakly in  LP(0,T; W, P(Q)),
which implies, by using (2.2), for all k& > 0, that there exists a function @ € (L (Q7))", such that
a(,t, Ty(un), VTk(un)) =@ weakly in  (LP(Qr))". (3.19)

We now establish that b(.,u) belongs to L>(0,7’; L*(2)). Using (3.18) and passing to the
limit-inf in (3.16) as n tends to +o00, we obtain

i/Bk(x,u)(T) dx < C
Q

1
for almost any 7 in (0, 7). Due to the definition of By (x, s) and the fact that %Bk(:n, u) converges

pointwise to b(x,u), as k tends to +oo, shows that b(z, u) belong to L>(0,T’; L*(12)).
Lemma 2. Let u, be a solution of the approximate problem (3.2). Then

lim limsup / a(z,t, up, Vuy)Vu, dedt = 0. (3.20)

m—00 n—oo
{m<|un|<m+1}
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Proof. We use T} (un — Tm(un))Jr = am(uy) € LP (0, T; Wol’p(Q)) N L>®(Q7) as test function
in (3.2). Then we have

T
/ <W, Ozm(un)> dt + / a(z,t, Uy, Vup)Vugal, (u,) de dt +
0

{m<u,<m+1}

+ / (gn(x,t,un, Vuy,) + Hy(x,t, Vun))ozm(un) dx dt <
Qr

< / ‘fnam(un)‘ dx dt,
Qr

" Oby(z, :
which, by setting B (x,r) = / mam(s) ds, (2.6) and (2.8) gives

0 88

/Bﬁl(aﬁ, up)(T) dx + / a(x,t, up, Vup)Vuy, dedt <
Q

{m<un<m+1}
< / |fn|d9€dt+/h(m,t)|Vun|p_1dxdt.
{m<un} Qr

Now we use Holder’s inequality and (3.3), in order to deduce

/Bﬁl(aﬁ, up)(T') dx + / a(x,t, up, Vuy)Vu, de dt <
Q

{mSun §m+1}

1

p/

=< / | fnl dz dt + 1 / \h(x,t)[P dx dt

{m<un} {m<un}

Since B (z,u,)(T) > 0 and the strong convergence of f,, in L*(Qr), by Lebesgue’s theorem, we
have

lim lim / | frldxdt = 0.

m—0o0 N—00
{msun}

Similarly, since h € LP(Qr), we obtain

Y e

lim lim / |h(z,t)Pdedt | =0.

m—r00 N—>00

{mﬁun}
We conclude that
lim limsup / a(x, t, un, Vuy)Vu, dedt = 0. (3.21)
m—00 n—oo
{m<up<m+1}
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On the other hand, using 77 (un — Tm(un))_ as test function in (3.2) and reasoning as in the proof
of (3.21) we deduce that

lim limsup / a(x,t, uy, Vuy)Vu, dzdt = 0. (3.22)

m—=0 p—oo
{=(m+1)<up<-—m}

Thus, (3.20) follows from (3.21) and (3.22).

Step 2:  Almost everywhere convergence of the gradients. This step is devoted to introduce
for k£ > 0 fixed a time regularization of the function T (u) in order to perform the monotonicity
method (the proof of this steps is similar the Step 4 in [5]). This kind of regularization has been
first introduced by R. Landes (see Lemma 6 and Proposition 3 [15, p. 230] and Proposition 4 in [15,

I 2
p. 231]). For k > 0 fixed, and let p(t) = te“ﬂfz, ~ > 0. It is well known that when ~ > < ;(k)> ,
e

one has

Li(k 1
o'(s) — < i )) lo(s)] > 5 forall seR. (3.23)
a

Let {¢;} C D(2) be a sequence which converge strongly to ug in L*(Q). Set w!, = (Tj(u)), +
+ e M Ty, (1), where (T (u)), is the mollification with respect to time of Ty (u). Note that w/, is a
smooth function having the following properties:

ow,, i i i
wft — Tj(u) strongly in  LP(0,T; Wol’p(Q)) as  p — o0. (3.25)

We introduce the following function of one real variable:
1 it |s| <m,
hm(s) =40 if |s| >m+1,
m+1—1s| if m<|s|<m+1,

where m > k. Let 04" = T (un) — w;, and At = 004 hyn(un). By using in (3.2) the test

function 2/, we obtain since gy, (, ¢, un, V) o(Ti(un) — wib)hm(un) >0 on {|u,| > k}:

/T<W; (T () wi)hm(un)>dt .
0

—i—/a(x,t, Un, V) (VT (un) — sz)go’ (01" hy () d dt +
Qr

+/a(:p,t,un,Vun)Vungo(Hﬁ’i)h/m(un)dxdt +
Qr

+ / (T, t, U, Vun)go(Tk(un) - wz)hm(un) dx dt <
{lun|<k}
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< /‘fnzu’ | dx dt + /|H z,t, Vuy) z“’ 1| da dt. (3.26)
Qr

In the rest of this paper, we will omit for simplicity the denote &(n, i, 7, m) all quantities (possibly
different) such that

lim lim lim lim e(n,p,i,m) =0,
M—00 §—$00 [4—+00 N—>00

and this will be the order in which the parameters we use will tend to infinity, that is, first n, then
i, i and finally m. Similarly we will write only £(n), or £(n, ), . .. to mean that the limits are made
only on the specified parameters.

We will deal with each term of (3.26). First of all, observe that

/}fnzﬁ:ﬁn‘ dx dt + /|Hn(x,t,Vun zﬁm‘ dx dt = e(n, u),
Qr

since @ (T (un) — wL) o (un) converges to (T (u) — (Ti(w))y + € Ty (1;)) hm (u) strongly in
LP(Qr) and weakly —x in L>(Qr) as n — oo and finally ¢ (T} () — (T (w)) u+e T (15) ) ham (w)
converges to 0 strongly in LP(Qr) and weakly —x in L°°(Qr) as p — oo. Thanks to (3.20) the third
and fourth integrals on the right-hand side of (3.26) tend to zero as n and m tend to infinity, and by
Lebesgue’s theorem and F' € (L” (Qr))Y, we deduce that the right-hand side of (3.26) converges to

zero as n, m and p tend to infinity. Since (Tj(uy) — wz)hm(un) — (Tg(u) — wL)hm(u) weakly*in

LY(Qr) and strongly in L?(0,T; Wol’p(Q)) and (Ty(u) — w!,)hm(u) — 0 weakly*in L'(Qr) and
strongly in L (0, T; Wol’p(Q)) as p — +00.

On the one hand, the definition of the sequence wj, makes it possible to establish the following
lemma.

Lemma 3. For k > 0 we have

/T< (z, up) (T (un) — wz)hm(un)> dt > e(n,m, ,1). (3.27)
0

Proof (see Blanchard and Redwane [6]).
On the other hand, the second term of the left-hand side of (3.26) can be written as

/a(x,t,un, V) (VT (un) — VwL)cp’(Tk(un) - wlﬁ)hm(un) dx dt =
Qr

— / a(x,t, uy, Vun)(VTk(un) — VwL)cp’(Tk(un) — wi)hm(un) dx dt +

{lun|<k}

+ / a(z, t, un, Vun) (Vg (un) — Vw/a)gp/ (T (un) — wL)hm(un) dx dt =
{lunl>k}

= / a(z, t, un, Vuy) (VTk(un) — VwL)go'(Tk(un) - wL) dx dt +
Qr
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+ / a(z,t, tn, Vup) (Vg (un) — VwL)cp’(Tk(un) —w' Vhm (un) da dt,

0
{lun|>k}

since m > k and hp,(un) =1 on {|u,| < k}, we deduce that

/a(x,t,un, V) (VT (un) — sz)w’(Tk(un) - wz)hm(un) dx dt =
Qr

= /(a(x,t,Tk(Un),VTk(un)) - a(m,t,Tk(un),VTk(u))) X
Qr

X (VT (un) — VTi(u)) @' (Th(un) — wz) dx dt +

+ /a(m, t, Tk (un), VTk(u)) (VTk(un) — VTk(u)) X
QT

x @' (T (un) — wL) hom (up,) dz dt +

—|—/a(ac, t, Ti(un), VI (un)) VI (w) ' (Tr(un) — wl)hm(un) dz dt —
Qr

—/a(a:,t,un, Vun)Vchp’(Tk(un) — wz) B (uy) dz dt =
Qr
:K1+K2+K3+K4.

623

(3.28)

By using (2.2), (3.19) and Lebesgue’s theorem, we have a(m,t,Tk(un),VTk(u)) converges to
a(z,t, T (u), VT, (u)) strongly in (LP'(QT))N and VT}(u,) converges to VT (u) weakly in

(LP(QT))N. Then

By using (3.19) and (3.25), we have

K3 = /aVTk(u) dx dt + e(n, p).
Qr

For what concerns K we can write, since h,(u,) = 0 on {|u,| > m + 1}:

Qr
=— / a(x,t,Tk(un),VTk(un))VngD'(Tk(un) - w,ﬂ)hm(un) dx dt—
{lun|<k}

- / a(x,t,TmH(un),VTm+1(un))VwLX

{k<|un|<m+1}

x @' (T (un) — wL) hom (uy,) dz dt,
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and, as above, by letting n — oo,

Ky=— / EVchp’(Tk(u) — wL) dx dt —
{lul<k}

— / EVU}L@’ (T (u) — wL) him(uw) dx dt 4+ €(n),

{k<|u|<m+1}
so that, by letting u — oo,
Ky = —/aVTk(u) dx dt +e(n, p). (3.31)
Qr
In view of (3.28), (3.29), (3.30), and (3.31), we conclude that

/a(:r,t,un, Vun)(VTk(un) — VwL)d(Tk(un) — wz) B () doz dt =
Qr

_ / (a1, Tewn), V() = a i, Ti(un), VTi(w) ) x
QT
X (VT (un) — V()¢ (T (un) — w},) da dt + e(n, p). (3.32)

To deal with the third term of the left-hand side of (3.26), observe that

/a(:c,t,un, V) Vg (041 B, (u,) da dt| < ¢(2k) / a(x,t, un, Vu,)Vu, dx dt.

Qr {m<|un|<m+1}

Thanks to (3.20), we obtain

/a(x,t, Un, Vin ) Vune (04 1, (uy) da dt| < e(n,m). (3.33)
Qr

We now turn to fourth term of the left-hand side of (3.26), we can write

gn (T, t, Up, Vun)cp(Tk(un) — wz)hm(un) dx dt| <

{lun|<k}

< / Li(k)La(z,t) + ’VTk(un)}p}go(Tk(un) - wL) ‘hm(un) dz dt <
{lun|<k}

< Ly(k) / Lo(z, t) | (Th(un) — wz) | dx dt +
Qr
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Ly (k)
+ Y a(@,t, T (un), VT (un)) VTk(un) |0 (Th(un) )| dx dt, (3.34)
Qr
since Lo(x,t) belong to L*(Q7) it is easy to see that

Li(k) / Lo(z, t) | (Th(un) — wl)‘ dx dt = e(n, p).
Qr

On the other hand, the second term of the right-hand side of (3.34), write as

Ll(ik) /a(x,t,Tk(un),VTk(un))VTk(un)]go(Tk(un) —w)| du di =
Qr
- Llo(ék) /(a(:}:,t,Tk(un),ka(Un)) — a(x,t,Tk(un),VTk(U))) x
QxT(VTk(un) VTi(w)) | (T (un) — w),)| dadt +
+ Lla(k) /a(:c,t,Tk(un),VTk(u))(VTk(un) VTi(w))|o(Te(un) — w},) | d dt +
Qr
+ LIOE"“) /a(x,t,Tk(un),VTk(u))VTk )| o (T (un) — w},) | da dt,

Qr

and, as above, by letting first n then finally © go to infinity, we can easily seen, that each one of last
two integrals is of the form &(n, x). This implies that

gn(T,t, Up, Vun)cp(Tk(un) — wL)hm(un) drdt| <

{|U7L|S/f}
< Lla(k) /(a(337t7Tk(Un)aVTk(Un)) - a(a:,t,Tk(un),VTk(u))) %
Qr
X (VTk(un) — VTk(w)) [0 (Th(un) — w),)| da dt + &(n, ). (3.35)

Combining (3.26), (3.27), (3.32), (3.33), and (3.35), we get

/(a(w,t,Tk(un), VTk(un)) — a(fn,t,Tk(un), VTk(u))) X
Qr

% (VT () — VT () (go/(Tk(u) iy - 220

(67

}@(Tk(un) — wL) ‘) drdt <
< 6(’/1, My Z.a m)7
and so, thanks to (3.23), we have
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/(a(x,t,Tk(un), VTi(un)) — a(,t, T (un), VTk(u))) X
Qr
X (VT (un) — VT (u)) dz dt < £(n).

Hence by passing to the limit sup over n, we obtain

lim sup / (a(az, t, T (un), VT (un)) — a(z, Tr(un), VTk(u))) (VTi(up) — VI (u)) dx dt = 0.

n—oo

Qr
This implies that
Ti(un) — Ti(u) strongly in  LP (0, T; W, P(Q)) forall k. (3.36)
Now, observe that, for every o > 0,
meas {(x,t) € Qr: |Vu, — Vu| > U} <
< meas {(x,t) € Qr: |Vuy,| > k} —i—meas{(x,t) €Qr: |ul > k}+
+ meas {(a:,t) €Qr: }VTk(un) — VT (u)| > U},

then as a consequence of (3.36) we have that Vu, converges to Vu in measure and, therefore,
always reasoning for a subsequence,

Vu, =+ Vu ae. in Qp,
which implies
a(z,t, Tr(un), VIk(un)) — a(z,t, Ti(u), VIp(u)) weakly in (Lp/(QT))N. (3.37)

Step 3: Equi-integrability of H,(z,t,Vu,) and g,(x,t, un, Vu,). We shall now prove
that H,(x,t, Vu,) converges to H(x,t,Vu) and g, (z,t, uy,, Vu,) converges to g(z,t,u, Vu)
strongly in L'(Qr) by using Vitali’s theorem. Since H,(x,t,Vu,) — H(x,t,Vu) ae. Qr
and g, (z,t,un, Vu,) — g(x,t,u, Vu) a.e. Qp, thanks to (2.5) and (2.8), it suffices to prove that
H,(z,t,Vuy,) and g, (z,t, u,, Vuy,) are uniformly equi-integrable in Q7. We will now prove that
H(x,Vu,) is uniformly equi-integrable, we use Holder’s inequality and (3.3), we have, for any
measurable subset £ C Qr,

1 =
= p/

p
/‘H(SL‘, V)| dz dt < /hp(w,t) dx dt /|Vun|p dedt | <
E E Qr

<c /hp(x,t) drdt ]
E

which is small uniformly in n when the measure of F is small.
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To prove the uniform equi-integrability of g, (z, t, u,, Vu,,). For any measurable subset £ C Qr
and m > 0,

/’gn(x, t, un, Vun)‘ dx dt = / ‘gn(fc,t,un, Vun)’ dx dt +
E

En{|un|<m}

En{|un|>m}

< Li(m) / [La(z,t) + [Vu,[P] da dt +

En{|un|<m}

+ / ’gn('x?t’un)VU/n)‘dl‘dt =
En{|un|>m}

= K1 + Ko. (3.38)

For fixed m, we get
K < Ll(m)/ [Lo(z,t) + | VT (un)|’] du dt,
E
which is thus small uniformly in n for m fixed when the measure of E is small (recall that T, (u,)

tends to 7,y (u) strongly in LP (0, T; VVO1 ?(€2))). We now discuss the behavior of the second integral
of the right-hand side of (3.38), let ,,, be a function such that

0 if |s|<m—1,
Um(s) =

sign(s) if |s| > m,
Pl(s)=1 if m—1<]|s| <m.

We choose for m > 1, ¥, (uy,) as a test function in (3.2), and we obtain

T

/Bﬁl(az,un)daz +/a(m,t,un,Vun)Vunw,’n(un) dxdt +
Q 0 Qr

+/gn(q:,t,un,Vun)wm(un)dazdt+/Hn(x,t, Vup)tm (uy) dx dt =
Qr Qr

= /fnwm(un) dxdt,
Qr

" Oby(z, s)

where B) (z,r) = /
0 S

Holder’s inequality

¥m(s) ds, which implies, since B (z,7) > 0 and using (2.4),

/ |gn (2, t, U, V)| da dt §/|Hn(33,t, Vuy,)|dx dt + / | f|dx dt,
E

{m—1<junl} {m—1<unl}
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and by (3.3), we have

lim sup / ‘gn(x,t,un, Vun)‘ dx dt = 0.

m—0o0 neEN
{lun|>m—1}

Thus we proved that the second term of the right-hand side of (3.38) is also small, uniformly in n
and in £ when m is sufficiently large. Which shows that g, (x,t, u,, Vu,) and Hy,(z,t, Vu,) are
uniformly equi-integrable in Q)7 as required, we conclude that

H,(x,t,Vu,) — H(z,t,Vu) strongly in L*(Qr), (3.39)
gn(z,t,upn, Vuy,) — g(x,t,u, Vu) strongly in Ll(QT). '

Step 4. We prove that u satisfies (2.10).

Lemma 4. The limit u of the approximate solution u,, of (3.2) satisfies

lim / a(z,t,u, Vu)Vudz dt = 0.

m—-+00
{m<Jul<m+1}

Proof. Note that for any fixed m > 0, one has

/ a(z,t, up, Vuy)Vuy, dedt =

{m<|un|<m+1}

= /a(m,t,un, Vun)(VTmH(un) — VTm(un)) dx dt =
QT

= / a(a:, t, Tont1(un)y Vi1 (un))VTmH(un) dx dt—
Qr

- / a(z, t, Tin(un), VI (un)) VT (uy) da dt.
Qr

According to (3.37) and (3.36), one can pass to the limit as n — +oo for fixed m > 0, to obtain

n—-+oo
{m<|un|<m+1}

lim / a(z,t, Uy, Vuy)Vu, dedt =

= /a(a;,t,Tm+1(u),VTm+1(u))VTm+1(u) dx dt —
Qr

—/a(m,t,Tm(u),VTm(u))VTm(un)da:dt:
Qr

- / a(z,t,u, Vu)Vu dz dt. (3.40)

{m<|un|<m+1}
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Taking the limit as m — +oo in (3.40) and using the estimate (3.20) show that u satisfies (2.10) and
the proof is complete.

Step 5: We prove that v satisfies (2.11) and (2.12).

Let S be a function in W2°°(R) such that S’ has a compact support. Let M be a positive real
number such that support of S’ is a subset of [— M, M]. Pointwise multiplication of the approximate
equation (3.2) by S’(u,,) leads to

aBg(@w —div <S’(un)a(fv7t,un, Vun)) + S//(Un)a(% ty Un, Vup) Vg, +
+ S (uy) (gn(x,t,un, Vuy) + Hp(z,t, VUn)) = fS'(un) in D'(Qr), (3.41)
where 2
Bl(z,2) = / WS/(T) dr.

0

In what follows we pass to the limit in (3.41) as n tends to +o0:

. 0B%(z,upn) . . . . .
Limit of — Since S is bounded and continuous, u, — u a.e. in 7, implies that
" i - . 0Bg(x,un)
Bg(x,uy) converges to Bg(x,u) a.e. in Q7 and L*°(Qr)-weak™. Then —=———= converges to
0Bs(x,u) .

5 in D'(Qr) as n tends to +oo.

The limit of — div (S’ (up)a(z,t, un, Vuy)). Since supp(S’) C [—M, M], we have for n > M :
S’ (up)an (2, t,un, Vuy,) = S’(un)a(:c,t, TM(un),VTM(un)) a.e. in Q7. The pointwise conver-
gence of u,, to u, (3.37) and the bounded character of S’ yield, as n tends to +o00 : S’ (uy,)ay, (:U, t, Up,
Vuy) converges to S'(w)a(z,t, Ta(u), VT (uw)) in (Lp/(QT))N, and S’ (u)a(z,t, T (u),
VT (u)) has been denoted by S"(u)a(z,t,u, Vu) in equation (2.11).

The limit of S”(u,)a(z,t, uy, Vu,)Vu,. Consider the “energy” term, S”(up)a(x,t,un,
Vu,)Vu, = S”(un)a(x,t,TM(un), VTM(un))VTM(un) a.e. in Qr.

The pointwise convergence of S’(uy,,) to S’(u) and (3.37) as n tends to +oo and the bounded
character of S” permit us to conclude that S” (un,)ay (%, ¢, Un, Vg )V, converges to S”(u)a(z,t,
T (), VT (u)) VT (u) weakly in L' (Qr). Recall that

S"(w)a(x,t, Tr(w), VI (w) VT (u) = 8" (w)a(z, t,u, Vu)Vu  ae. in Q.

The limit of S (uy) (gn (@, ¢, Un, Vuy) + Hp (2, t, Vuy)). From supp(S’) C [-M, M], by (3.39),
we have S(un)gn(z,t, un, Vu,) converges to S'(u)g(z,t,u,Vu) strongly in L'(Qr) and
S'(un)Hy(z,t, Vuy,) converge to S’(u)H (x,t, Vu) strongly in L' (Qr), as n tends to +oc.

The limit of S’(uy)f,. Since u, — u ae. in Qr, we have S’(uy)f, converges to S’'(u)f
strongly in L'(Q7), as n tends to +oo.

As a consequence of the above convergence result, we are in a position to pass to the limit as n
tends to +oo in equation (3.41) and to conclude that u satisfies (2.11).

It remains to show that Bg(x,u) satisfies the initial condition (2.12). To this end, firstly re-
mark that, S being bounded and in view of (2.14), (3.15), we have B¢(x,u,) is bounded in
LP(0,T; Wy (). Secondly, (3.41) and the above considerations on the behavior of the terms

0B% n) . . ! !
ng’w is bounded in L'(Qr) 4+ LP (0, T; W1 (Q)). As a conse-

of this equation show that
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quence (see [21]), B2(z,uy)(t = 0) = B%(z,uqy,) converges to Bg(z,u)(t = 0) strongly in L(12).
On the other hand, the smoothness of S and in view of (3.1) imply that Bg(x,u)(t = 0) = Bg(z, uo)
in €. As a conclusion, steps 1 -5 complete the proof of Theorem 1.
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