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DIVIDEND PAYMENTS IN A PERTURBED COMPOUND POISSON MODEL
WITH STOCHASTIC INVESTMENT AND DEBIT INTEREST *

TUBIJEHIHI BUTLJIATH Y 35YPEHII CKJIATHINA
IMTYACCOHIBCBKI MOJEJI 31 CTOXACTUYHUMMY THBECTULIISIMUA
TA JTEBETOBUMM BIICOTKAMM

We consider a compound Poisson insurance risk model perturbed by diffusion with stochastic return on investment and
debit interest. If the initial surplus is nonnegative, then the insurance company can invest its surplus in a risky asset and
risk-free asset based on a fixed proportion. Otherwise, the insurance company can get the business loan when the surplus
is negative. The integrodifferential equations for the moment generating function of the cumulative dividends value are
obtained under the barrier and threshold dividend strategies, respectively. The closed-form of the expected dividend value
is obtained when the claim amount is exponentially distributed.

PosrisimaeThes CKIIaHa MyacCOHIBChbKa MOJENb CTPAaXOBUX PHU3HMKIB, 30ypeHa audys3i€ro, 31 CTOXaCTUYHUM JOXOAOM TIO
IHBECTHLISIX Ta 1eOSTOBUM BiICOTKOM. SIKIIO MOYATKOBHIl HA/UTHIIIOK € HEBII’€MHHM, TO CTPAaXOBa KOMIIaHis MOYKE BKJIAaTH
el Ha/UTHILOK Y PU3UKOBi a00 Oe3pU3UKOBi akTHBH B (hikcOBaHii nponopiii. B mpoTuiie)xHOMy BHITAKY, KOJIH Ha JIHIIOK €
BiI’€MHHM, CTpaxoBa KOMIIaHIsl MOXKe OTPHMYBATH 0i3HECOBI KpenuTH. IHTerpo-audepeHmiansHi piBHAHES U1 QyHKIIT, I1o
MOPOKYE MOMEHTH 3HAYCHb KyMYJIATUBHHX AWBIACH/IB, OTPUMAHO AT Oap’€pHUX Ta MOPOTOBHX AWBIACHAHUX CTpaTerii
BiamoBinHO. O4ikyBaHy BEIMYMHY IWBIJCHAIB OTPUMAHO B 3aMKHEHiH (opMi y BUNAJKy eKCIOHEHIIATEHOTO PO3MOALITY
CYMH T1030BY.

1. Introduction. The compound Poisson insurance risk model perturbed by diffusion was first
introduced by Gerber [8] and further studied by many authors, such as Dufresne and Gerber [7],
Yuen et al. [23], Asmussen [1], Chiu and Yin [5], Lu et al. [15]. If investment income is
introduced in the perturbed compound Poisson model, the security loading will be a variable. In the
field of actuarial mathematics, researchers paid lots of attention to the issue of stochastic investment
and debit, for example, Gerber [9], Zhu and Yang [24] considered the absolute ruin problem in the
compound Poisson model when the debt and credit interest rates were the same. Cai [4] studied the
Gerber — Shiu function in the classical insurance risk model with debit interest. Paulsen and Gjessing
[19] simplified the version of the model which was used by Paulsen [16] through incorporating a
stochastic rate of return on investments. Then they computed the probability of eventual ruin and the
infinitesimal generator of the risk process. Gerber and Yang [11] proposed the general risk model
with investment, in which the insurance company can invest its surplus in a risky asset and risk-free
asset. If the company invests money in the bank or borrows money from the bank, the rate of return
can be described as

rRdt, if surplus is nonnegative,

dR; = (1.1)

aRdt, if surplus is negative,
where r is the company’s lending rate, « is the borrowing rate which satisfies a > r > 0. The model
of the risky asset satisfies the stochastic differential equation
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dSt = /.LStdt + O'StdBOt, (12)

where pt + 0By is the return on investment \S; to the risky asset, { By} is the standard Brownian
motion. Yin and Wen [22] extended the model of Paulsen [17] to the following form:

t
Ut:u+Pt+/Us_dRs with Py = Ry =0,
0

where {P;}, {R;} were independent Lévy processes, u was the initial value, {P,} was a general
two-sided jump-diffusion risk model.

Dividend strategies were first introduced by De Finetti [6]. He formulated the problem and
solved it under the assumption that the surplus was a discrete process without investment. The study
of the dividend strategy was also be conducted by Biihlmann [3], Paulsen [16], Jeanblanc-Picqué and
Shiryaev [12], Asmussen and Taksar [2], Gerber and Shiu [10], Wan [20], Lu and Wu [14], Yin and
Yuen [21]. Many results were obtained using the property of stationary and independent increments
of the Poisson process and Brownian motion. Recently, Yin and Wen [22] extended the model raised
by Paulsen [17] and obtained the integrodifferential equations of the Gerber — Shiu functions and total
discounted dividends, respectively. For further references, see two survey papers Paulsen [17, 18].
In recent papers the model was extended to renewal risk model with stochastic return, see Yin and
Wen [22] and Li [13].

Motivated by the previously mentioned papers, we are going to study the moment generating
function of dividend value under barrier and threshold dividend strategies on a perturbed compound
Poisson model with stochastic investment and debit interest. The rest of the paper is structured as
follows. In Section 2, the perturbed compound Poisson model with stochastic investment and debit
interest is introduced. In Section 3, the second-order integrodifferential equations for the moment
generating function of aggregate dividends under the barrier dividend strategy are established. In the
case of the exponential claim size, the exact solution of the third-order differential equations and the
closed-form of the expected dividend value are obtained. In Section 4, the threshold dividend strategy
is discussed. The integrodifferential equations for the moment generating function of aggregate
dividends and the expected dividend value are obtained.

2. The insurance risk model with investment income. We consider a company with initial
surplus u. If no dividends are paid, the surplus at time ¢ is

N
P :u+cthXi+01Wt,
i=1

N,
where ¢ > 0 is the premium rate, o is a constant. The aggregate claim process {Z tl XZ} is
i

the compound Poisson process with parameter A\, {X;} is a sequence of independent and identically
distributed random variables, the density function is defined as p(x). {W;} is the standard Brownian
motion independent of the aggregate claim process. Now, suppose that the surplus is nonnegative,
then the company can invest its money in a risk-free asset and a risky asset. The risk-free asset price
is assumed to follow the stochastic differential equation (1.1), and the risky asset price is the same
as (1.2). Wy and By, are correlated with dW;dBy; = pdt.
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Assume that if the surplus U; > 0 then the insurance company invests the surplus by a fixed
proportion 7 to the risk-free asset and the rest proportion 1 — 7 of the surplus to the risky asset. If
the surplus Uy < 0, then the insurance company borrows money from the bank under the debt rate c.
Hence, the modified surplus risk process {U;} satisfies the following equation. Let ¢ > 0, for small
enough At,

Tr, U >0, 1, U;>0,
AU, = UAt x + (1 — 1)U (pAt + 0 ABy,) X + AP,

o, U <0, 0, U <0,

Let initial » > 0, for small enough ¢ and At = dt, we have
dUs = rUs—ds + (1 — T)uUs—ds + (1 — 7)oUs_dBys + dPs =
=[rr+ (1 —7)plUs—ds + (1 — 7)oUs_dBys + dPs =
= Us_dLs + dPF;, 0<s<t, (2.1)
where L; = adt + bdBy;. We use a and b that are defined below
a=71r+(1—-71)u, b=(1—-71)o.

From (2.5) in Yin and Wen [22] as a special case we get the another form of the equation (2.1) listed
as follows:

t t N,
Ut—u—i—/(c—i—aUs)ds—l—/\/(al—l—prs_)?—Hﬂ(l—pQ)USQ_dBS—ZXi, u >0,
0 0 =1

where {By,t > 0} is a standard Brownian motion independent of the compound Poisson processes
involved.
If u <0, for small enough ¢ and At = dt, then {U,} satisfies the equation

dUt == dPt + OéUtdt. (22)

To solve the stochastic differential equation (2.2) we consider the process V; = U;e~t. By using the
product rule, we have dV; = e~ dU; — ae~*U;dt. Combining with (2.2) we obtain dV; = e~ *'dP;.

t
This gives V; = Vy + / e~ **dPs. The solution for stochastic differential equation (2.2) is
0

t t t

Ns
U =e* [u+ c/e_o‘sds — eo‘t/e_o‘stXi + aleo‘t/e_o‘de(s), u < 0.
0 0 =1 0

According to the above results, for small enough ¢ > 0, we get the model

t t N,
u+ / (c+aUs)ds + / \/(01 + pbUs_)* + b2 (1 — p2) U2 dB, — Xy, u>0,
0 0 =
t= t t N, t
et (u + c/ e_o‘sds> - eo‘t/ e_o‘st, ) Xi+ aleo‘t/ e~ dW(s), u<D0.
0 0 = 0

(2.3)
We assume that the company can still run as long as the surplus is above the level —c/a, that is, if
the surplus is below —c¢/«, then the company’s interest can no longer pay off the debt and absolute
ruin occurs immediately.
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3. The barrier dividend strategy of the model. In this section we focus on the barrier dividend
strategy. If the surplus U; > n, n > 0, then the excess D(t) = U; — n all will be paid to the
shareholders as dividends. However, if the surplus U; < n, then no dividends are paid. If the surplus

is below — E, then absolute ruin happens and the surplus process stops. We define the dividend value
o

until time ¢:

t
/IU>77dD)
0

Then the modified surplus is
Uy(t) = Us — Dy(n),

where {U,} is modeled by (2.3).
For simplicity, we let
E[|Uy = u] = Ey(").

We denote V' (u,n) as the dividend value function of the strategy, which is

V(u,n) = Eu[Dr];

1
where Dy, = e%dDy(n), & > 0 is the force of interest for valuation, and T} is the absolute

0
ruin time defined by

T) = inf {t > 0,Uy(n) < —g}

Let M (u,y,n) = E,[eYPT:] be the moment generating function of D7, and

eyltu=m)+Vinm) uw>,
M(u,y,n) = < Mi(u,y,n), 0<u<mn,
MQ(u’yan)7 _E <U<0.
a

We assume that, for any y < oo, M (u,y,n) exists, Mi(u,y,n) and Ms(u,y,n) are twice continu-
ously differentiable for u € (—E, n).
«@
Theorem 3.1. [0 < u < n, then My (u,y,n) satisfies the integrodifferential equation

aMl(U, Y, 77) aMl(u’y777)
M = — 7 y—
1(u,y,1m) = (au + ) —— L
1 2 2 92 8 Ml(u y,n )
+§<O'1 +2,0b0'1u+b )T

+A/M1(u — x,y,n)p(x) de+

ut<

+/\/M2 u—,y,n)p dx+)\/ (3.1)
ut-<
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[f—E < u <0, then Ms(u,y,n) satisfies the following equation:
a

1 82M u,y, oM. Uu, 1, OM- u,y,

)\MQ(U, Y, 77) = QO%W + (Olu + C)2(8uyn) — 6y2(ayy77)+
ut+< o
0 u+§

with boundary conditions

C
M2 (—ajy’ 77) = 1, M1(0+,y,?7) = MQ(O_aya 77)7

OM (u,y,n)
ou

(3.3)
= yMi(n,y,n).

u=n

Proof. 1f 0 < u < 7, we consider an infinitesimal time interval (0,¢). By the Markov property
of the process {U,}, we have

Mi(ua Y, 77) = EuMi(Utaye_5t7 77) + O(t)7 i1=1,2, 0<u<n. (34)

Let A 4 B means that A and B have the same distribution. Set

¢ ¢
Vi =u+ /(c + aUy)ds + / \/(01 + pbUs—)2 + b2(1 — p2)U2_dB;.
0 0

In the infinitesimal time interval (0,¢), the insurance risk process (2.3) has three possible cases.
(i) If no jump happen in (0, ), then its probability is e and U; < Y.
(i) If there is only one jump in (0,¢) and the claim size is X1, then its probability is Ate ™

and Ut i Y;g — Xl.
Further, according to the amount of the claim, there are the following situations:
(1) if 0 < X1 < Y%, then ruin do not occur,

Q) ifY, <X <Y+ E, then the ruin occur,
o

B ifXxi >+ E, then the absolute ruin occur.
Q@

(iii) If there are two or more jumps, then its probability is o(t).
So, we have

Mi(u,y,n) = e ME, [ My (Yy, ye % n)]+

Y:
—l—)\te_)‘tEu/Ml(Kt —x,ye %" n)p(x) do+
0

Yit g
e ME, / Ma(Y; — 2, ye~% )p(z) dz+
Y:
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+Ate ™ME, / x) dz + o(t). (3.5)
Vit

By Itd’s formula, we obtain

—5t —t
OM, (Y, ye™ % n) v+ y3M1(Yt,y€ Jl)de—at
ou Oy
19*My (Y, ye ™ n)
2 ou?

dM; (Yy, ye % n) =

_|_

(dY;)2.
Then

EuMl (}/h yeiétv 7)) = Ml (U, Y, 77)"‘

t
OMy (Y, ye %, OM; ( Ys, )
1B, /(c—}—aUs) 1Y, ye d—é/ (Yoo ye™5m) asg | 4
ou
0
62M Y;, (537
+2E / 1(au§e n) [(01 + pbU,_ )% + b2(1 — p*)U2_] ds. (3.6)

0

Substituting (3.6) into (3.5) and dividing both sides of (3.4) by ¢, then letting ¢ — 0 and rearranging
it we get (3.1).
If ¢ < u < 0, we let that
e

t
at 1
ho(t,u) = ue™ + M + o™ / e~ dWs.

«
0

By full probability formula we have
Mo (u,y,m) = e Ma(ha(t, u), ye ™" )+
hote
+Mte ME, / My (ha(t,u) — x,ye ™% n)p(x) de+

+Ate ME, / z)dz + o(t). (3.7)

hat+%
By using It6’s formula, we obtain

OMy(ha(t,u), ye *,n
ou
L OMs(ha(t u) ye* ) dye®t 1 192 My (ha(t,u), ye "
ou 2 Ou?

dMZ(h’a(tau)vye_(StaT/) = )dha(t,u)+

) (g, )2, (3.8)
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By using (3.7) and (3.8), we get (3.2).
Noting that if v = —E, then 77 = 0 and D, = 0. So we have
«

C
M2 (_aay)n) = E—é(eyDTl) = 17 M1(0+7y777) = M2(0_7y7 77)’

due to M;(u,y,n), i = 1,2, are continuous at u = 0.
OM (u,y,n

By the definition of M (u,y,n), we get 3
u

lu=p = yMi(n,y,n). The boundary condi-

tions (3.3) are obtained.
Theorem 3.1 is proved.
Let M(u,y,n) =1+ yV(u,n) + o(y), for small enough y, where

Vl(ua 77)7 O<u< m,

V(u,n) = EU[DTl] = (3.9)

Va(u,n), —2 <u<0.

Substituting (3.9) into (3.1) and (3.2), comparing the coefficients of y, we get the following results.
Theorem 3.2. [0 < u < n, then V;(u,n),i = 1,2, satisfy the equation

1
A+ 0)Vi(u,n) = 5(62142 + 2pboiu + o7) VY (u,m) + (au + c)V{ (u,n)+
ut-<

+A / Vi(u —z,n)p(x)dx + A / Vo(u — z,n)p(z)dx. (3.10)
0 u

If—E < u < 0, then Va(u,n) satisfies the equation
«

1
(A+)Va(u,n) = SofVs'(u,m) + (u + ) V3 (u,n)+

ut+<
+A / Va(u — z,m)p(z) dx (3.11)
0
with boundary conditions
Vit =1, Vi(0+) =V5(0-),  Vi(0+) = V2(0-). (3.12)

Example3.1. Assume that the claim size has an exponential distribution with the density function
d
p(z) = e~ . Applying the operator (d + 1) on (3.10) and (3.11), we get the following results.
u
If 0 < u <, then V;(u,n) satisfies the equation

1
3 (b*u® + 2pboyu + o) Vi (u, )+
1
+ [2(b2u2 + 2pboyu 4 o3) + (a + b*)u + pboy + c| V' (u,n)+
+(au+c+a— 86— NV (u,n) — Vi (u,m) = 0. (3.13)
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c . .

If —— < wu <0, then Va(u,n) satisfies the equation
o'

1 1
50%1/2’”(%77) + <au +c+ 20%) Vo' (u,m) + (qu — A =8 + )V (u,n) — 6Va(u,n) = 0. (3.14)

Letting 6 = b®> = 0, A = a + ¢, then (3.13) gives the equation

1 1
otV + (au e+ 50F )W) + aubi(un ) =o.
2 2 2
Using substitutions = = au, V{(u,n) = e “g(x); 2 = ax+ac— a;i, g(x) = Wf(x); t= —%,
i
f(z) = h(t), (3.13) yields
)+ (£ = 2 1) W(#) + eh(t) = 0 (3.15)
2 ado? ' '

For convenience, we let 02a® = 2, thus (3.15) changes into a confluent hypergeometric equation

th” (t) + (; — t) h'(t) + ch(t) = 0.

The general solution to the above equation is a linear combination of two independent solutions

1 1
h(t) = csH (—c, 2,t> + cgL <—c, 2,t> ,

1 1
where H <—c, 3 t) and L (—c, > t) are the first and second kind of confluent hypergeometric

functions respectively, c; and cg are constants. Transforming back to the original variables, we get
the following solution:

2c5  _ 1 —a?(au+c—02/2)?
Vi) = pe H (~e g~ Im A
1

9 1 — 2 _ 2 22
0626_“L<—c, a*(au + ¢ 01/)>.

+a201 2’ 2

So Vi(u,n) = / V{(z) dz + V1(0+,n). Next, we compute cs, cg. For (3.14), let o1 = 0, we have
0
(au+e)Vy' (u,n) + (qu +c— X =38 + a)Vy(u,n) — 6Va(u,n) = 0. (3.16)
With change of variable y = —u — 2, 9(y) = Va(u,n), (3.16) becomes
a—A—90 4]
0"+ ( )4 + Sa) =0,
a a
This is an confluent hypergeometric equation. The general solution is
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Ats < 61+M,—y>+08eyL<1—5,1—)\+6,—y>.
« A Q

9(y) =cr(~y) = e!H X

Transforming back to the original variable, we have

c S 5 A+6 c
fege "R L (1—5,1—)‘+5,u+6). (3.17)
A « «
As
F((H—(S)
0 A+

lim Va(u,n) = CSL( X,1 - +,0) = cgiaé =0,
ul—% o F<1+a>

so cg = 0.
Letting 6 = 0 in (3.17), then we obtain

. \
Vg(u,n):07(u+ ) eV (1 1—|— —|—;>.

By using the boundary condition (3.12), we get

2c5 1 a?(an — 0?2 /2)? 06 _ 1 a?(an+c+02/2)
H(—c = — "L —c, = =1, 3.1
2¢5 1 a?(c—o?/2)? 2¢q 1 a*(c—o02/2)?
((04) = S H(—c, =, — L(—c s 22020
Vi(0+) a2o? <C’2’ 2 +a20% “9 8
A
= o (3)“6—5 [)‘H <1,1+A,c> —H<1,1+A,c> T H<2,2+)\,c>] -
e c o’ o o« a+ A o’ o
_V(0-), (3.19)
and
25 [ 1 /2)
_ 2cs e axr — oy
Vl(O“F) - a20-% /6 H <—C,2,—2> dx+

0

2 [ 1 a*(ax +c+01/2)

Co C a*(ax + ¢+ oy
Ll —c =

+a20§/e ( “y 2 )
0
c\a A c
e ()“H(1,1+;> = V3(0-) (3.20)
a a

Let
P:)\H<1,1+/\,c>—H(1,1+)\,C>+ a H<2,2+/\,c>,
c a « o o a4+ A o«
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640
/ 1 a?(ax — 02/2)?
Aq :/e‘rH -, —, — L dzx,
2 2
0
f 2 2
BlzfexL _qua (ax +c+07/2) iz,
2 2
0

The solutions to the above three equations are

A
2 2 BlP—BgH(1,1+,C>
a‘oie a’ o
“= Ty A c ’
(AoBy — A1By)P + H (L 1+ o a) (B2As — A2 B3)
A
2 92.m A3H<1,1+,C)A1P
a‘oie o a
6=y A ¢ ’
(A2By — A1By)P+ H (L 1+ o a) (B2As — A2 B3)
c (67 % P(BlAg — A1B3)
—c
C

X .
(A2By — A1B)P + H <17 1+ o 2) (B2A3 — A2B3)

4. The threshold dividend strategy. In this section, we consider the threshold dividend strategy
for surplus Uy, where Uy is defined by (2.3). The company will pay dividends to its shareholders
according to the following strategy governed by parameters n > 0 and 8 > 0. Whenever the
(modified) surplus is below the level n, no dividends are paid. However, when the modified surplus
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is above 7, dividends are paid continuously at a constant rate . If the surplus is below the level
—E, the absolute ruin happens and the dividend process stops.
a ~
_ Let Dy(n) denote the aggregate dividends paid by time ¢ > 0. The modified surplus process
Uy, (t) is given by ) )
Uy(t) = U — Di(n).
Let 6 > 0 be the force of interest for valuation, and let D, denote the present value of all dividends

until the absolute ruin,
Ts

DT2 :/6_&6”515(77)’
0

where

T, = inf {t > 0,0,(n) < —2} .

We denote V (u,n) as the expected dividend value function of the strategy, that is
V(’U,, 77) - EU[DT2]

Let M(u,y,n) = E, [e¥P72] be the moment generating function of D7,,. For any y < 0o, we have
0< M(u,y,n) < limy oo M (u,y,n) = evs < 400, then M (u,y,n) exists.
We define R
Ml(U,?Jﬂ?)y if w > 07

M(le/a??): ~ . C
Ms(u,y,m), if — o <u<0.

Theorem 4.1. Suppose that M(u, y,m) is twice continuously differentiable u € (—E, 77), then
- - o
M (u,y,n) and Ms(u,y,n) satisfy the following equations:

OMy(u,y,m) . OMa(u,y,m) 1 50°Ms(u,y,n)
ou oy oy +201 ou?

C
Ut (o9

+A / Mg(u—x,y,n)p(:c)dx—i—)\/p(a:)da:, —§<u<07 (4.1
0 u—i—&

AMQ(”? Y, 77) = (au + C)

MM+

)\Ml(uvyvn) = (au—l—c) ou ay

1 02 M (
+§(b2u2 + 2pboiu + 03 ———2 1 Y y n)

A / Na(u — @y, m)p(e) da + A

U

p(x)de, 0<u<mn, (4.2)

:\;\8

82]\Zl (U, Y, 77)

§ 1
(A —yB)My(u,y,n) = 5(52162 + 2pbo1u + o7) 52
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u

—|—[(c —B) 4+ au — 6y]w + )\/Ml(u —x,y,n)p(z) de+

dy
0
ut+= 00
5\ / No(u — 2y, m)p(x) dz + A / p(z)dz, u>n, 4.3)
u u+§

with boundary conditions
~ c L 8 - ~
M2 <—*7y777) = 17 lim Ml(uay)n) :ey57 M1(0+ay)77) :M2(0_7y77’)
(e uToo
Proof. The proof of (4.1), (4.2) are similar to (3.1), (3.2), and are omitted. Next, we prove (4.3).
By Markovian property, we get

M (u,y,n) = Ey[M(Us,ye™",n)] + o(t).

Hence,
My (u,y,m) = (1= M)e eV By My (u, ye % n)]+
Zy
+)\te>‘tey6tEu/M1(Zt — z,ye " n)p(x) dz+
0
Zi+<
—|—)\te_’\teyﬁtEu / MQ(Zt -, y€—5t7 n)p(z) drv+
Zt
+Mte MVt R, / p(x) dx + o(t),
Zi+ 2
where
t t
Zi = u+ /(c — B+ aUy)ds + / \/(01 + pbUs—)2 + b2(1 — p2)U2_dBs;.
0

0
By using the same arguments as in the proof of Theorem 3.1, we get (4.3).
Noting that if v = —E, then 75 = 0 and D7, = 0. So we have
o

M2 (_gvya 77) = E*é (eyDTz) =1

M;(0+,5,n) = Ma(0—,y,n) due to M(u,y,n) is continuous at u = 0.
By the definition of Mj(u,y,n), we get limy oo M (u,y,n) = eY5. The boundary conditions
for M;, i = 1,2, are obtained.
Theorem 4.1 is proved.
Set M (u,y,n) =1+ yV(u,n) + o(y), where
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) Vi(u,m), u>0,
V(u,n) = BEu[Dr,] = | . c (4.4)
Va(u,n), o <u<0.

Substituting (4.4) into (4.1), (4.2) and (4.3), comparing the coefficients of y, we get the following
results.

Theorem 4.2. If—E <u <0, then f/g(u, n) in (4.4) satisfies the equation
e

- - 1 -
(8 4+ MVa(u,n) = (au+ )V (u,m) + 501V (u,m)+

ut= 0o
+A [ Ve(u—a,y,mpx)dz+ X | plz)d. (4.5)
/ J

ut+<
If0 < u <, then Vi(u,n),i = 1,2, in (4.4) satisfy the equation

N N 1 N
(0 + MVi(u,n) = (au + )V{(u,n) + §(b2u2 +2pboru + o)V (u, n)+

C
u u+5 0o

+A / Vi(u — x,n)p(x) de + X / Va(u — x,n)p(z) dz + A / p(z) dx. (4.6)

0 u u+§

If u >, then Vi(u,n),i = 1,2, in (4.4) satisfy the equation

. 1 - .
0+ MVi(u,m) = §(b2u2 + 2pbou + o) VY (u,n) + (¢ — B + aw)V{ (u,n)+

ut<

«

—i—)\/f/l(u —z,n)p(x)de + A / ‘N/Q(u —z,n)p(x)de + S 4.7
0 u

with boundary conditions
5 c . 3
V(——,)zo, lim Vi (u, ) = 2,
2 (= lim Vi(u,n) =
‘71(0+777) = ‘72(0_’77)’ ‘71,(0+’77) = ‘72/(0_777)’
Vit m) =Vin—m),  Viln+,m) = Vi(n—,n).
Remark4.1. Letting A = 0 in (4.5), (4.6) and (4.7), then they can be changed to

~ ~ 1 ~
5‘/2(7“1’7 77) = (au + C)V2/(u777) + 50%‘/2”('“777)7 _2 <u< 07 (48)
~ ~ 1 ~
OVi () = (au+ ) V{(u,n) + 5 (0"u* + 2pboru + o)V (), 0<u<n,  (49)

- 1 - -
OV (u,n) = 5 (0% + 2pboru + o) VY () + (¢ = B+ aw)V/(w,n) + 8, u>n.  (4.10)

In the case of u > 0, (4.9) and (4.10) are obtained by Yin and Wen [22], where they got the same
results by using different methods. We extend their results for the more general case.
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