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CLASSICAL KANTOROVICH OPERATORS REVISITED *
3HOBY ITPO KJIACUYHI OIIEPATOPU KAHTOPOBHYA

The main object of this paper is to improve some known estimates for the classical Kantorovich operators. We obtain a
quantitative Voronovskaya-type result in terms of the second moduli of continuity, which improves some previous results.
In order to explain the nonmultiplicativity of the Kantorovich operators, we present a Chebyshev —Griiss inequality. Two
Griiss — Voronovskaya theorems for Kantorovich operators are also considered.

OCHOBHHMM 00’€KTOM JOCII/DKCHHS € TOJIIIEeHHS NEeIKUX BIIOMHX OLIHOK Ul KJIACHYHHX oreparopiB KanTtopoBuuya.
OTpuMaHO KUIBKICHUH pe3ylsraT TUIy BOpOHOBCEKOI B TepMiHax APYrMX MOAYJIIB HENEPepBHOCTI, IO MOJNIMIIyE Ie-
K1 monepeaHi pe3ynsTatd. 11106 mosCHUTH HEMYNBTUILTIKATUBHICTH oneparopiB KaHTopoBnda, MU HaBOIMMO HEpPIBHICTbH
Yeobummosa - 'procca. Takox posnisiHyTo Teopemu I'procca—BoponoBcskoi st oneparopis Kanrtoposnya.

1. Introduction. In 1930 L. V. Kantorovich [11] introduced a significant modification of the classical
Bernstein operators given by

Ko(fi) = (n+1)Y pual) / f(t)dt.
k=0 o

Here n > 1, f € L[1]0,1], = € [0,1] and
Y\ k n—k
pn,k(w): (k?)x (1_1') 3 0§k§n7

Pk =0, if k<0 or k>n.

These mappings are relevant since they provide a constructive tool to approximate any function in
L,[0,1], 1 < p < o0, in the L,-norm. For p = oo, C[0, 1] has to be used instead of L. [0, 1].

These classical Kantorovich operators have been attracting a lot of attention since then, but
results on them are somehow scattered in the literature. They share this with other relevant variations
of the Bernstein-type: Durrmeyer, genuine Bernstein — Durrmeyer and, last but not least, variation-
diminishing Schoenberg splines.

In the present note we first collect and improve some of the known estimates by giving quite a
precise inequality for f € C"[0,1], r € NU {0}, a new Voronovskaya result in terms of wo and a
Chebyshev — Griiss inequality giving an explanation of their nonmultiplicativity. The last part of this
article deals with two Griiss — Voronovskaya theorems for Kantorovich operators.

Most estimates in this article will be given in terms of moduli of smoothness of higher order. In
the background, but not explicitly mentioned, is always the K -functional technique. In this sense we
were very much influenced by the work of Zygmund (see, e.g., [16]), a hardly accessible conference
contribution of Peetre [12] and also by the book of Dzyadyk [4].
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2. Some previous results. In this section we collect some results given earlier. Quite a strong
general result was given by the second author and Xin-long Zhou [10] in 1995.
Let p(z) = \/z(1 — x) and P(D) be the differential operator given by

P(D)f = (szf/)/v f € 02[07 1]
For f € L,[0,1], 1 < p < oo, the functional K (f,t), is defined as below
K(f,0)y = inf {|f — glly + I P(D)gllp: g € C20, 1]}

Using the above functional in [10] the following theorem was proved.
Theorem 2.1. There exists an absolute positive constant C' such that for all f € L,[0,1], 1 <
< p < 00, there holds

CTUE(f.n7 ), < | f = Kufllp < CE(f,n7Y/?),.

Also, in order to characterize the K -functional used in Theorem 2.1, the next result was given
in [10].
Theorem 2.2. We have

K(fat)pNwi(fat)p_'_tQEO(f)pv 1 <p<007
and
K(f,t)o0 ~ w?a(f? t)oo + w(f, t2)oo

Here w(f,t), is the classical modulus, w?p,( fit)oo denotes the second order modulus of smoothness
with weight function ¢ and Ey(f), is the best approximation constant of f defined by

Bo(f)p = inf [|f = cll

Moreover, all quantities subscripted by oo are taken with respect to the uniform norm in C[0, 1].
The following theorem of Piltdanea [13] is the key to give a more explicit result in terms of classical
moduli for continous functions. (See [8] for details.)

Theorem 2.3 [13]. If L: CI[0,1] — C|0,1] is a positive linear operator, then for f € C[0,1],

1
x € [0,1] and each 0 < h < = thefollowzng holds:

[L(f52) ~ F@) < 1L(eo; ) ~ /1) + 3 |Eler — msa)ll £ 1)+

+|zena) + gLt - 20| watrin)

The condition h < 1/2 can be eliminated for operators L reproducing linear functions.
Theorem 2.4. Forall f € C[0,1] and all n > 4,

1560 = flle < e (£ ) + o (152

This result can be extended to simultancous approximation, see again [8].
Theorem 2.5. Let r € No,n >4, f € C"[0,1]. Then

<7"+ Lr D" flloo + ;\4}1 <D7’f, f>+2w2 <D”f;\/lﬁ>-
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3. A quantitative Voronovskaya result. This part has its predecessor in a hardly known
booklet of Videnskij in which a quantitative version of the well-known Voronovskaya theorem for
the classical Bernstein operators can be found (see [15]). This estimate was generalized and improved
in [9]. An application for Kantorovich operators was given in [8]. Here we improve it as follows:

Theorem 3.1. For n > 1 and f € C?|0, 1], one has

1 N 2 3 1"
wtfd = =3 (Y| <52 (Gl 4 107 +
32 \/n+1w1 "Vn+1 w2 "Vn+1 ’

where X = x(1 —z) and X' =1 — 2z, z € [0, 1].
Proof. From [9] (Theorem 3) we get

IN

‘Kn(f; z) — f(z) = Kn(t — zy2) f' () — %Kn ((er —x)%2) f'(x)

K,.((e1 — )% 2)| 5 " 3 Kn(lep —x)h2) 1 ”
<K((er — i) { B IO B iy (B 22 Yt}

Using the central moments up to order 4 for Kantorovich operators, namely

1—-2x
K, (t—z;z) = A El)
K, ((t—2)%z) = (n+11)2 {x(l —z)(n—1)+ ;} ,
K, ((t—2)%2) = m {102(1 — z)n + 22* — 22 + 1},

Kyt — x)4;x) :('11—1-11)4{?%2(1 —z)*n? +52(1 —2)(1 — 22)*n + 2t — 223 + 222 —x + ;} ,
we have

Ky ((t—2)%2) | < 5 Ky ((t—2)%2) | - 3(n+2)

K, ((t—)%2z) — 2(n+1)’ K, ((t—2)%z) — (n+1)%
Therefore, the following inequality holds:

_ 1-2z , 1[z(l—-z)(n—1) 1 "

Ko(fia) = )~ g ) - 5 | PO s ) <

n—1 1 25 " 3 3(n+2) "
= [x(l s e 1)2] {12h(n+ pyr(Fh) (4 - 16h2(n+1)2) wlf ’h)}

and for h =

we obtain, after multiplying both sides by n,

1
vn—+1
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We can write

n[K(fi2) - £(@)) - L2 (@) - La(1 - )" (w)| <
< |nlatrio) - 1@ - g (5= 0) 10 - 5 o1 -0 4 | )+
1-22 1 1 3n+1 ,, n "
S0+ el P ) - s )| <

9 2 ", 1 ", 1 L § / "
S32{n+1w1 (f m) e (f ’m>}+3(n+1) (4””**'” ”OO)‘

4. Chebyshev-Griiss inequality for Kantorovich operators. In a 2011 paper Rasa and
the present authors [1] published the following Griiss-type inequality for positive linear operators
reproducing constant functions. We give below the improved form of Rusu given in [14]:

Theorem 4.1. Let H: Cla,b] — Cla,b] be positive, linear and satisfy Heg = eg. Put
D(f,g;x) := H(fg;x) — H(f;x) H(g; x).

Then, for f,g € Cla,b] and x € [a,b] fixed, one has

1. -
D(f.gi2)| < 76 (F320/H (e = 2)%2)) & (g:2V/H (e — 2)%2))
Here & is the least concave majorant of the first order modulus wy given by

{(t —z)wi(f;y) + (y — D (f;2)
y—x

@(f;t) = sup 20§$§t§y§b—a,x;&y}.

Remark 4.1. For an accesible proof of the equality between @ and a certain K -functional used
in the proof of the above theorem see [13].

Hence the nonmultiplicativity of Kantorovich operators can be explained as in the following
theorem.

Theorem 4.2. For the classical Kantorovich operators K, : C[0,1] — C]0,1] one has the
uniform inequality

1._ 1 5 1
| Kn(fg) — KnfKnglloo < i (f%%/ 2(”"‘1)> w (9;2 2(”"‘1)) , n=>1, (2)

forall f, g € C[0,1].
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Proof. The most precise upper bound is obtained if we use the exact representation

1 1
2, —
Close to « = 0,1 this shows the familiar endpoint improvement. For shortness we use the estimate
K ((t—l’)Q'ZE) < ;
" T 2(n4 1)

5. Griiss — Voronovskaya theorems. The first Griiss — Voronovskaya theorem for classical Bern-
stein operators was given by Gal and Gonska [5]. In Theorem 2.1 of this paper a quantitative form
was given (see also Theorem 2.5 there). The other examples in [5] deal with operators reproducing
linear functions; this is not the case for the Kantorovich mappings. The limit for K,, was identified
recently in [2] to be the same as in the Bernstein case, namely

f(z)d (x)x(1 — z) for f,g € C2[O, 1].

Our first quantitative version is given in the following theorem.
Theorem 5.1. Let f, g € C?[0,1]. Then, for each x € [0,1],

o(1), f,9 € C?[0,1],
1
o(—=), f.gec?o,1],
|n [Kn(fg) = Knf - Kngl = Xf'd|| = (ﬁ) fr9 € C°[0,1]
O (i) . f,gecto,].

Proof. We proceed as in [5] by creating first three Voronovskaya-type expressions from the dif-
ference in question plus the remaining quantities. Recall that the Voronovskaya limit for Kantorovich
operators is

1 1 1
S(Xf) = SXf (@) + 5 X' (=),
2 2 2
where X :=z(1 —z), so X' =1 — 2z.
For f, g € C?[0,1], one has

Knlf9:) — Knlf50)Kn(gs2) — - X f(2)g/ () =

= Kalfg) = (fo)(@) — 5 (X(Fa)) -

1) | Kalgiz) ~ o) = 5 (X9 | = 9(0) | (i) = i) = oY |+
Flgla) — Kl )] [Kn(f3) — 1)~
Kl fs)Kn(g ) — X'+ (f)(w) + o (X(f0))'+
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1

1) | Kalgi) — o(a) = 5o (X0 |+ 0t0) [t = 0) = x| -

- [g<x) - Kn(g; :IZ)] [Kn(fvx) - f(x)] :

The first three lines will be estimated below. First we will show that the sum of the following
three lines equals 0.
For the time being we will leave out the argument z. One has

~Knf - Kng — %Xf’g’ + fg+ % (X'(fo) + X(f9)") +
HKag = 9= 5 F(X'g + Xg") + gKof — fg = 5-g(X'f'+ X ")
—lg — Kng| [Knf — f] =

1 1 1
=-K,f Kng— ﬁXf/g' +f9+ 5 (X'flg+ X'fq') + 57X (f"g+2f'd + fg")+

FFng — fg = - (FX'9 + FX") + 9Fuf — fg - 59X f' + X f")-

—9Knf+ Kng- Knf + fg— fKng =0.
For the first two lines above we will use the Voronovskaya estimate given earlier, namely that for

h € C?[0,1] one has

n(Knh —h) — = (X1)

1
2

2 3
e h/oo h//Oo
< 3y (1 e 10 ) +

[e.e]

9 2 1 1
+—{——w | W > + w (h”; >} =:U(h,n).
32{«/n+1 1< N 2 N (h,n)
For the third line we use Theorem 2.4 showing that for h € C?[0,1] we get
1 9 1
Kb — hlloe < —||B e =0(=).
I8t = e < gl + 1 =0 (3
Collecting these inequalities gives

| [Kn(fg) — Knf - Kngl — X f'd'||, <

< U(fg,n) + | flocU (g, m) + llglloc U(fim) + O (i) _
(0(1), f,g € C?0,1],
= O(;ﬁ)’ f’g€C3[071]7
O (i) . f,g€Co,1].
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In the following we give a Griiss — Voronovskaya type theorem when f and g are only in C'*[0, 1].
Theorem 5.2. Let f, g € C'[0,1] and n > 1. Then there is a constant C independent of n,

f, g and x, such that
C
<ot )on )+
n
_1 1
£ ows (978 ) + g lloctes (/07 %) +

/ /
+ max{ If Uoo,wg (f’,n_%) } max{ lg |1|°O,w3 (g',n_%) }} )
nz nz

HKn(fg> — Knf Kng — %f/g/

o0

Proof. Let

(1—-x)

En(f,9:2) = Ku(fg:2) = Kn(f:2)Kn(giw) = =2 (2)g (), )

and denote C' a constant independent of n, f, g and x, which may change its values during the
course of the proof.
For f,g € C'[0,1] fixed and u,v € C*[0, 1] arbitrary, one has

|En(f7g;'r)‘ = ’En(f—quUvg—erv;w)l <
SNEW(f —u,g —viz)[ + | En(u, g — viz)| + |En(f — w, v 2)| 4 | En(u, 03 2)] - (4)
Let h(z) = z, x € [0,1]. Applying [1] (Theorem 4) there exists 7, 6 € [0, 1] such that

Kn(fgiz) — Kn(f;2)Kn(g;2) = f'(0)g'(0) [Kn(h*;2) — (Kn(h;2))?] =

= g O {21 -0+ et | ©)

From (3) and (5) we get

n + n
(n+1)2  12(n+ 1)2

nEa(f.g:7)] < [wu ) fa(l - w)] 1 el 1lse <

1

§2|:£U(1—ZC)+24<TL+1)

] 1 e . ©)

Using Theorem 3.1, for f € C4[0, 1], we have

1

nlKa(fi2) = £@)] = 5 (XF) @] < O (17 loo + 150 + 17" + 159 cc) -

But, for f € C"[a,b], n € N, one has (see [6], Remark 2.15)

max {11} < €max | flloe, 17}

0<k<n

Therefore,
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1

n () @]~ 5 (XF) @) < S max {17 o 159} )

For u,v € C*]0,1] using the same decomposition as in proof of Theorem 5.1, the relation (7) and
Theorem 2.4, we get

B, v:2)] < \anv;x) — (o)) — 5 (X)) |+
Hu)] [ Ka(v10) = o) = 51 (00| 4 000K 0) = ate) 5 (xuy |+
+ |v(z) = Kn(v; 2)] [Kn(u; 1) — u(z)] <
< S mane Lo oo, [ o} mae { o o [0 o} (8)

From the relations (4), (6) and (8) we obtain

Bulfgia)] < 2 a1 =) + g7t | L0 = 0/l = 0 o+ 0ol 9= o) o+

C
11(F = Y ool lloo } + 5 max { o ooy 11 o § max {10 oo, 110 o -

Using [7] (Lemma 3.1) for r =1, s =2, fj3 =w and gp3 = v, forall h € (0,1] and n € N, we
have

Bulf.gia)] <  {anl sl o) + fn(F Rt ) + (g R )| +
C
+ﬁ max {flel(f’ h), %wg(f', h)} max {;wl(g, h), %w;ﬁ,(g’, h)} <

<

s1Q

{ws(f', Mws(g'sh) + [[f lsws (', B) + (19 llosws (F, 1) } +
C 1 1
S a1 e a7 | {9 s nta's )}
Choosing h = n_%, we obtain
|En(f g52)] < ¢ w3 (f/ Tf%) w3 (9’ Tf%) +
b ) —_ n b )

1 _1
1 loows (9sn 7 ) + gl (/s F) +

! /
+ max{ If Uoo,wg (f',n_%> } Inax{ lg Uoo,wg (g',n_%) }} .
nz

nz2

This implies the theorem.
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