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INSTABILITY INTERVALS FOR HILL’S EQUATION
WITH SYMMETRIC SINGLE-WELL POTENTIAL

IHTEPBAJIM HECTABIJIBHOCTI JJIs1 PIBHAHHA XIJIJIA
3 CUMETPUYHUM OJHOAMHHUM INIOTEHHIAJIOM

We deduce some explicit estimates for the periodic and semiperiodic eigenvalues and the lengths of the instability intervals
of Hill’s equation with symmetric single-well potentials by using an auxiliary eigenvalue problem. We also give bounds
for the gaps of the Dirichlet and Neumann eigenvalues.

3a IOmOMOTOI0 TOTIOMIKHOT 33/1a4i Ha BIIACHI 3HAYEHHS OTPUMAHO AESKI SBHI OLIHKH VIS MEPIOIUYHMX 1 HaIliBHEPiOANIHUX
BJIACHHX 3HAYCHb Ta JIOBKHH IHTEPBaANiB HECTAOLTBHOCTI JUTS PiBHAHHSA X1/UIa 3 CHMETPUYHUM OJHOSMHHM IOTEHII1aJI0M.
Takok HaBeIEHO OLIHKY IS IIUIMH Y MHOKWHAX BIACHUX 3Ha4eHb Jlipixie Ta Hoiimana.

1. Introduction. We consider the differential equation

y' () + (A —q(t) y(t) =0, (1.1)

where \ is a real parameter and ¢(t) is a real-valued, continuous and periodic function with period
a. Our interest is with two eigenvalue problems associated with (1.1) on [0, a] . The periodic problem
of (1.1) with the boundary conditions y(0) = y(a), ¥'(0) = 3/(a). This problem has a countable
infinity of eigenvalues denoted by {\,}. We are also concerned with the semiperiodic problem of
(1.1) with the boundary conditions y(0) = —y(a), y'(0) = —y'(a) and the eigenvalues are denoted
by {in} . It is known [4] that the two sets of eigenvalues satisfy the relation

—00 <Ao< oS <A <A <pe<pz<....

We also denote the eigenvalues of (1.1) with the Dirichlet boundary conditions y(0) = y(a) = 0 by
A, and the Neumann boundary conditions 3'(0) = 3/(a) = 0 by v,. It is also known [4] that, for
n=0,1,2,...,

fon < Aoy < piont1,  Aont1 < Aopa1 < Aopga, (1.2)

and

pon < Vongt < fongt,  A2ntl < Voango < Aopga. (1.3)

The instability intervals of (1.1) are defined to be (—o0, o), (f2n, 2n+1), (A2n+1, A2nt2) and
called the zeroth, (2n + 1)th and (2n + 2)th instability interval, respectively. The length of the nth
instability interval of (1.1), whether it is absent or not, will be denoted by [,,. We note that the
absence of an instability interval means that there is a value of A for which all solutions of (1.1)
have either period a or semiperiod a. Instability intervals for Hill’s equation with various types of
restrictions on potential have been investigated by many authors over the years [1, 4, 9]. We refer
in particular to [7, 8] in which ¢(¢) is a symmetric single-well potential. Some results about the
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first instability interval were obtained in [7] and the eigenvalue gap for Schrodinger operators on an
interval with Dirichlet and Neumann boundary conditions was considered in [§].

In this paper we obtain estimates about the instability intervals of (1.1) with ¢(¢) being of a
symmetric single-well potential with mean value zero. By a symmetric single-well potential on
[0,a], we mean a continuous function ¢(¢) on [0, a] which is symmetric about ¢ = g and non-

increasing on [O, %} . Our analysis is based on the following theorem of Hochstadt, which involves

A, (7) the eigenvalues of (1.1) considered on the interval [7, 7 + a] where 0 < 7 < a with Dirichlet
boundary conditions

u(r) = ylr +a) =0.

We refer to this problem as “auxiliary eigenvalue problem”. Here we note that this problem is
equivalent to the following problem [6]:

y'(t)+ (A —q(t+7))y(t) =0,

We note that ¢/(t) exists since a monotone function on an interval [ is differentiable almost
everywhere on I [5].

We now state an asymptotic approximation previously obtained for the auxiliary eigenvalues
[1-3] which will be used to prove our results. It was shown in [3, p. 1275] (for N = 2) as n — oo:

(n+1)7r+ a

1/2(y _
A(T) a 4(n+1)* 72 -

T+a

X | cos (Mf) / ¢ (t) sin <2(n+1)7rt> dt —

a a
T

T+a

—sin (MT> /q’(t)cos (Mt) dt| —

a

a

a2

_ 2 -3
8(n+1)37730/q (t)dt+o(n7’). (1.4)

As an illustration of our results, we give the following theorem.
Theorem 1.1. Let q(t) be a symmetric single-well potential on [0, a]. Then, as n — oo,

a/2
2
A2n+1*A2n > (4n+3)ﬂ' . 1 /q’(t)sin 4(n+1)7rt dt| —
Vant2 — Voant1 a? 2(n+ 1) a
0
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a/2

_(2n—11—1)7r / ¢ (t)sin <2(2n:1)ﬂt> dt| +o(n?)
0

and
) a/2
— 4 1 4 1
Agpi1 — Agy < ( n+23)7r " /q’(t) sin( (n+ )Wt> dtl +
Von+2 — Vop+1 a 2 (TL + 1) s a
0
a/2

—l—w / ¢'(t)sin <2(2n;1)77t> dt| +o0(n7?).
0

The following theorem [4] which involves the auxiliary eigenvalues A, (7) plays an important
role to obtain periodic and semiperiodic eigenvalues.

Theorem 1.2 [4]. The ranges of Aoy (7) and Aoy y1(T) as functions of T are [pan, ton+1] and
[A2n+1, Aont2] , respectively.

By this theorem and the fact that A,,(7) is a continuous function of 7, we observe that

max Agn(7) = pizp+1,  min Aoy (1) = pign,

(1.5)

max Aopi1(7) = Aanto, HlTiIl Aop+1(7) = Aonta-

2. Proof of the result. Before we prove the results, we first state the following lemma.
Lemma 2.1. [f q(t) is a symmetric single-well potential, then

0 /T“‘ . < (n: L)m )dt _ 2/0a/2 ¢ (t)sin (2(":1)%) dt,

(ii) q/(t) cos (Wt> dt =0,

. a

a a/2 a/2
(iii) /0 ¢(t)dt = aq*(a) + 2a /0 q(t)q (t)dt — 4 /0 tq(t)q (t)dt.

2 1
Proof. (i) Since ¢'(t) sin < (nl— )Wt> is a periodic function with period a, we get
o 2 1 i 2 1
/ ¢ () sin <("+)7rt) dt = /q’(t) sin (Wt> dt =
a a
T 0
a/2 a
2 1 2 1
:/q’(t)sm< (n+ D )dt+/ ()sm< (nj; ) t)dt:
0 a/2
a/2 a
2 1 2 1
= / ¢ (t) sin <(n1—)7rt> dt — / q (a —t)sin (Wt) dt =
0 a/2
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_ / ¢(t)sin <2(”Zl)”t) dt.
0

The last equality holds since ¢(t) is symmetric and ¢'(t) exists.
(ii) It can be proved similarly.
(iii) By using integration by parts, we have

[ =l -2 [ taod (@) d -
0 0
a/2 a
—ag(a) 29 [ tad @+ [ ta ®de p =
0 a/2
a/2 a
= ag’(a) - 2 /tq(t)q’(t)dt—/tq(a—t)Q’ (a—t)dt » =
0 a/2
a/2 0
—a(a) 23 [ta®d®dr+ [ (@-aodoa -
0 a/2
a/2 a/2
:aq2(a)+2a/q(t)q' () dt—4/tq(t)q’(t)dt.
0 0

Theorem 2.1. The periodic and semiperiodic eigenvalues of (1.1) satisfy, as n — oo,

A 2(n+1) " 4(n+1)
2n+1 _ n -+ ™ - a — /ql(t) sin ((7’L—|—7Tt) dtl —
Aé{fw a 8(n+1)"w ) a
64 (n +1)° 73
a/2 a/2
« ag(a) + 24 / o(O)d (1)t — 4 / ta(t)d (B)dt | + o0 (n~?)
0 0
and
M1/2 2 1 2 2(2 1
n :(n+ )Tr:F a i /q'(t)sin( (2n + )Wt>dt—
1/2 a 2(2n+1)" 72 a

Hon+1
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CL2

— X
8(2n+1)"m3

a/2 a/2
x lag*(a) +2a [ q(t)q'(t)dt —4 [ tq(t)q'(t)dt| +o(n™?).
i

Proof. From (1.4) and Lemma 2.1, we observe that

AY2(7) = M+
a
a/2
2(n+ )7 a / a
CL2
8(n+1)%3

a/2 a/2
x lag*(a) +2a [ q(t)q' (t)dt —4 [ tq(t)q'(t)dt| +o(n™?).
0/ 0/

If we minimize and maximize the last equation, we find

a/2
min AY2(7) = (ntDm a 5 /q'(t) sin <2(n+1)7rt> dt| —
T a 2(n+1)"m2 a
8(n+1)>n3

a/2
« |ag(a) + 24 / o(H)d (1)t — 4 / ta(t)d (B)dt | + o0 (n~?)
0

[e=]

and
a/2
max AY2(7) = (n+1)m + ¢ 55 /q’(t) sin (Mt> dt| —
T a 2(n+1)"m ) a
8(n+1)> 73

a/2 a/2
x lag*(a) +2a [ q(t)q' (t)dt —4 [ tq(t)q'(t)dt| +o(n™?%).
i

2.1)

2.2)
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Now, (1.5), (2.1) and (2.2) prove the theorem.
Corollary2.1. 1, satisfies, as n — 00,

a/2

2 2

l,=— /q’(t) sin (mt> dt| +o(n?).

nm a
0

Proof. Follows from Theorem 2.1.
Proof of Theorem 1.1. Theorem 2.1, (1.2) and (1.3) are used to prove the theorem.
Corollary2.2. Let q(t) be a constant. Then, as n — oo,

_ 2
Aopy1 — Aoy _ (4n "‘23)77 +o (n_2).

Von+2 — Von+1 a

Proof. Follows from Theorem 1.1.
3. An example. To illustrate the foregoing results, we consider an eigenvalue problem

y'(t) + (A —aq(t) y(t) =0, tel0,m),

™4 1

863

1 2
where ¢(t) = — (t - —) + = (t — g) and extended by periodicity. Since we assumed that g(¢)

4 2 2
has mean value zero in our results, we take ¢(t) as follows:

(t)—l(t 7r>4+1<t 71')2 2 rd
=7 2 2 9 24 160°

In this case, by evaluating integral terms in Theorem 1.1, Theorem 2.1 and Corollary 2.1, we obtain,

as n — 0o,
1/2
/\2{L+1 w24+ 4
e T A
A2n—&—2 (n + ) T
B L4 [357% + 3847 4+ 1792] + 0 (%),
64 (n + 1)3 1290240
1/2
M2{z om+ 17 w44
= n —_—
1/2 3
:“27/1+1 322n+1)°~w
N L4 [357% + 3847 4+ 1792] + 0 (n%)
8 (2n + 1)3 1290240
— 2+4 2+4
Aopi1 — Aoy, S dn 43 T+ - ™™+ S to(n?),
Von+2 — Van+1 64 (n+1) 16 (2n +1)
— 244 244
Aopy1 — Aoy <dni34 " + ; ™+ +o(n?),
Von+2 — Vont1 64 (n+1) 16 (2n+1)
and
™ +4 _
lpt1 = o (n 2) .

8(n+1)>
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