R. S. Dyavanal, M. M. Mathai (Karnatak Univ., India)

UNIQUENESS OF DIFFERENCE-DIFFERENTIAL POLYNOMIALS OF MEROMORPHIC FUNCTIONS*

ПРО €ДИНІСТЬ РІЗНИЦЕВО-ДИФЕРЕНЦІАЛЬНИХ ПОЛІНОМІВ МЕРОМОРФНИХ ФУНКЦІЙ

We investigate the problems of uniqueness of difference-differential polynomials of finite-order meromorphic functions sharing a small function ignoring multiplicity and obtain some results that extend the results of K. Liu, X. L. Liu, and T. B. Cao.

Вивчаються проблеми єдиності різницево-диференціальних поліномів мероморфних функцій скінченного порядку, що поділяють малу функцію (нехтуючи кратністю). Отримано деякі результати, що узагальнюють результати К. Liu, X. L. Liu і Т. В. Cao.

1. Introduction and results. In this paper, a meromorphic function always means it is meromorphic in the complex plane \mathbb{C} . We assume that the reader is familiar with standard notations of the Nevanlinna theory of entire and meromorphic functions as explained in [5, 6, 14].

Let f(z) and $\alpha(z)$ be two meromorphic functions. We say that $\alpha(z)$ is a small function with respect to f(z) if $T(r,\alpha(z))=S(r,f)$, where S(r,f) is used to denote any quantity satisfying $S(r,f)=o\bigl(T(r,f)\bigr)$ as $r\to\infty$, outside an exceptional set E of finite logarithmic measure, i.e., $\lim_{r\to\infty}\int_{\{1,r\}\cap E}\frac{dt}{t}<\infty$.

Let f(z) and g(z) be two non-constant meromorphic functions. If, for $a \in \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, the quantities f(z) - a and g(z) - a have the same set of zeros with the same multiplicities, then we say that f(z) and g(z) share the value a CM (counting multiplicities). At the same time, if we do not consider the multiplicities, then f(z) and g(z) are said to share the value a IM (ignoring multiplicities). Let f(z) and g(z) share the value 1 IM and let z_0 be a 1-point of f(z) of order p and a 1-point of g(z) of order q. We denote the counting function of the 1-points of both f(z) and g(z) with p > q by $\overline{N}_L\left(r, \frac{1}{f-1}\right)$. In the same way, we can define $\overline{N}_L\left(r, \frac{1}{g-1}\right)$.

Let f(z) be a non-constant meromorphic function. Let a be a finite complex number, and let k be a positive integer. By N_k , $\left(r, \frac{1}{f-a}\right)$ $\left(\text{or }\overline{N}_k\right)\left(r, \frac{1}{f-a}\right)$, we denote the counting function of the roots of f(z)-a with multiplicity $\leq k(\text{IM})$ and by $N_{(k)}\left(r, \frac{1}{f-a}\right)$ $\left(\text{or }\overline{N}_{(k)}\left(r, \frac{1}{f-a}\right)\right)$, we denote the counting function of the roots of f(z)-a with multiplicity $\geq k$ (IM). We set

$$N_k\left(r, \frac{1}{f-a}\right) = \overline{N}\left(r, \frac{1}{f-a}\right) + \overline{N}_{(2}\left(r, \frac{1}{f-a}\right) + \ldots + \overline{N}_{(k}\left(r, \frac{1}{f-a}\right).$$

Further, we define the order $\rho(f)$ of a meromorphic function f(z) by

^{*} First author is supported by Ref. No. F. 510/3/DRS-III/2016(SAP-I) and the second author is supported by Ref. No. KU/Sch/UGC-UPE/2014-15/894.

$$\rho(f) = \overline{\lim}_{r \to \infty} \frac{\log T(r, f)}{\log r},$$

and the hyper order $\rho_2(f)$ of a meromorphic function f(z) by

$$\rho_2(f) = \overline{\lim}_{r \to \infty} \frac{\log \log T(r, f)}{\log r}.$$

Let m be a non-negative integer, $a_0 \neq 0, a_1, \dots, a_{m-1}, a_m \neq 0$ be complex constants. Define

$$P(w) = a_m w^m + a_{m-1} w^{m-1} + \dots + a_1 w + a_0.$$
(1.1)

In 2010, X. G. Qi, L. Z. Yang and K. Liu [12] considered the problems of uniqueness regarding the difference polynomials of entire functions and obtained the following result.

Theorem A. Let f(z) and g(z) be transcendental entire functions of finite order and c be a non-zero complex constant. If $n \ge 6$, $f(z)^n f(z+c)$ and $g(z)^n g(z+c)$ share 1 CM, then $fg=t_1$ or $f=t_2g$ for some constants t_1 and t_2 that satisfy $t_1^{n+1}=1$ and $t_2^{n+1}=1$.

In 2011, X. M. Li, W. L. Li, H. X. Yi, Z. T. Wen [7] have improved the above result and obtained the following result.

Theorem B. Let f(z) and g(z) be transcendental entire functions of finite order and $\alpha(z)$ be a meromorphic function such that $\rho(\alpha) < \rho(f)$, let c be a non-zero complex constant and let $n \ge 7$ be an integer. If $f(z)^n (f(z) - 1) f(z + c) - \alpha(z)$ and $g(z)^n (g(z) - 1) g(z + c) - \alpha(z)$ share 0 CM, then $f(z) \equiv g(z)$.

Next, K. Liu, X. L. Liu, T. B. Cao [8-10] proved the following results.

Theorem C. Let f(z) and g(z) be transcendental meromorphic functions of finite order. Suppose that c is a non-zero constant and $n \in \mathbb{N}$. If $n \geq 26$, $f(z)^n f(z+c)$ and $g(z)^n g(z+c)$ share 1 IM, then f = tg or fg = t, where $t^{n+1} = 1$.

Theorem D. Let f(z) and g(z) be transcendental entire functions of finite order, $n \ge 5k + 12$. If $[f(z)^n f(z+c)]^{(k)}$ and $[g(z)^n g(z+c)]^{(k)}$ share the value 1 IM, then either $f(z) = c_1 e^{Cz}$, $g(z) = c_2 e^{-Cz}$, where c_1 , c_2 and C are constants satisfying $(-1)^k (c_1 c_2)^{n+1} [(n+1)C]^{2k} = 1$ or f = tg, where $t^{n+1} = 1$.

Theorem E. Let f(z) and g(z) be transcendental entire functions of $\rho_2(f) > 1$, $n \ge 5k + 4m + 12$. If $\left[f^n(f^m-1)f(z+c)\right]^{(k)}$ and $\left[g^n(g^m-1)g(z+c)\right]^{(k)}$ share the value 1 IM, then f=tg, where $t^{n+1}=t^m=1$.

In this paper, we shall extend these results to meromorphic functions and obtain the following two theorems.

Theorem 1.1. Let f(z) and g(z) be two non-constant finite order meromorphic functions. Suppose that $a(z) (\not\equiv 0, \infty)$ is a small function with respect to f(z), which has no common zeros or poles with f(z) and g(z). Let k(>0) and m(>0) be two integers satisfying n>4m+13k+19, P(w) be as defined in (1.1) and c be a non-zero complex constant such that f(z) and g(z) are not periodic functions of period c, poles of f(z) are not zeros of f(z+c) and poles of g(z) are not zeros of g(z+c). If $\left[f^nP(f)f(z+c)\right]^{(k)}$ and $\left[g^nP(g)g(z+c)\right]^{(k)}$ share a(z) IM, f(z) and g(z) share ∞ IM, then one of the following two cases holds:

(1) $f \equiv tg$, for a constant t such that $t^d = 1$, where d = GCD(n + m + 1, ..., n + m + 1 - i, ..., n + 1), $a_{m-i} \neq 0$ for some i = 0, 1, 2, ..., m;

(2) f(z) and g(z) satisfy the algebraic difference equation $R(f,g) \equiv 0$, where $R(w_1,w_2) =$ $= w_1^n (a_m w_1^m + a_{m-1} w_1^{m-1} + \dots + a_0) w_1(z+c) - w_2^n (a_m w_2^m + a_{m-1} w_2^{m-1} + \dots + a_0) w_2(z+c).$

Theorem 1.2. Let f(z) and g(z) be two non-constant finite order meromorphic functions. Suppose that $a(z) \not\equiv 0, \infty$ is a small function with respect to f(z), which has no common zeros or poles with f(z) and g(z). Let k(>0) be integer satisfying n>13k+19, $P(w)=a_0$, where $a_0 \neq 0$ is a complex constant and c be a non-zero complex constant such that f(z) and g(z) are not periodic functions of period c, poles of f(z) are not zeros of f(z+c) and poles of g(z) are not zeros of g(z+c). If $\left[f^nP(f)f(z+c)\right]^{(k)}$ and $\left[g^nP(g)g(z+c)\right]^{(k)}$ share a(z) IM, f(z) and g(z)share ∞ IM, then one of the following two cases holds:

- (1) $f(z) \equiv tg(z)$ for a constant t such that $t^{n+1} = 1$; (2) $a_0^2 \left[f^n f(z+c) \right]^{(k)} \left[g^n g(z+c) \right]^{(k)} = a^2(z)$.
- 2. Some lemmas. We need the following lemmas to prove our results.

Lemma 2.1 [2]. Let f(z) be a meromorphic function of finite order ρ and let c be a fixed non-zero complex constant. Then, for each $\epsilon > 0$, we have

$$m\bigg(r,\frac{f(z+c)}{f(z)}\bigg)+m\bigg(r,\frac{f(z)}{f(z+c)}\bigg)=O(r^{\rho-1+\epsilon}).$$

Lemma 2.2 [3]. Let f(z) be a meromorphic function of finite order ρ and let c be a fixed non-zero complex constant. Then, for each $\epsilon > 0$, we have

$$T(r, f(z+c)) = T(r, f) + O(r^{\rho-1+\epsilon}).$$

It is evident that S(r, f(z+c)) = S(r, f).

Lemma 2.3 [11]. Let f(z) be a meromorphic function of finite order ρ and let c be a fixed non-zero complex constant. Then

(i)
$$N\left(r, \frac{1}{f(z+c)}\right) \le N\left(r, \frac{1}{f}\right) + S(r, f),$$

(ii) $N\left(r, f(z+c)\right) \le N(r, f) + S(r, f),$

- (iii) $\overline{N}\left(r, \frac{1}{f(z+c)}\right) \leq \overline{N}\left(r, \frac{1}{f}\right) + S(r, f),$
- (iv) $\overline{N}(r, f(z+c)) \leq \overline{N}(r, f) + S(r, f),$

outside an exceptional set with finite logarithmic measure.

Lemma 2.4 [15]. Let f(z) be a non-constant meromorphic function and p, k be two positive integers. Then

$$N_p\left(r, \frac{1}{f^{(k)}}\right) \le T\left(r, f^{(k)}\right) - T(r, f) + N_{p+k}\left(r, \frac{1}{f}\right) + S(r, f),$$

$$N_p\left(r, \frac{1}{f^{(k)}}\right) \le k\overline{N}(r, f) + N_{p+k}\left(r, \frac{1}{f}\right) + S(r, f).$$

Lemma 2.5 ([13], Lemma 3). Let f(z) and g(z) be two non-constant meromorphic functions. If f(z) and g(z) share 1 CM, then one of the following three cases holds:

(1)
$$T(r,f) \leq N_2\left(r,\frac{1}{f}\right) + N_2\left(r,\frac{1}{g}\right) + N_2\left(r,f\right) + N_2\left(r,g\right) + S(r,f) + S(r,g);$$
 the same inequality holds for $T(r,g)$;

(2)
$$fg = 1$$
;

(3)
$$f \equiv g$$
.

Lemma 2.6 [15]. Let $f_1(z)$ and $f_2(z)$ be two non-constant meromorphic functions. If $c_1f_1 + c_2f_2 = c_3$, where c_1 , c_2 and c_3 are non-zero constants, then

$$T(r, f_1) \leq \overline{N}(r, f_1) + \overline{N}\left(r, \frac{1}{f_1}\right) + \overline{N}\left(r, \frac{1}{f_2}\right) + S(r, f_1).$$

Define

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right),\tag{2.1}$$

$$V = \left(\frac{F'}{F-1} - \frac{F'}{F}\right) - \left(\frac{G'}{G-1} - \frac{G'}{G}\right),\tag{2.2}$$

where $F=\frac{\left[f^nP(f)f(z+c)\right]^{(k)}}{a(z)}$ and $G=\frac{\left[g^nP(g)g(z+c)\right]^{(k)}}{a(z)}$, both f(z) and g(z) are meromorphic functions of finite order, c is a non-zero complex constant such that f(z) and g(z) are not periodic functions of period c, $a(z)(\not\equiv 0,\infty)$ be a small function with respect to both f(z) and g(z), which has no common zeros or poles with f(z) and g(z).

Using the similar method as in Lemma 2.14 of Banerjee [1], we obtain the following lemma.

Lemma 2.7. Let F, G and H be defined as in (2.1). If F and G share 1 IM and ∞ IM, and $H \not\equiv 0$, then $F \not\equiv G$ and

$$T(r,F) \leq N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + 2\overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{G}\right) + 7\overline{N}(r,F) + S(r,F) + S(r,G),$$

the same inequality holds for T(r, G).

Lemma 2.8 [16]. Let F, G and V be defined as in (2.2). If F and G share ∞ IM and $V \equiv 0$, then $F \equiv G$.

Lemma 2.9 [16]. If F and G share 1 IM, then

$$\overline{N}_L\left(r, \frac{1}{F-1}\right) \le \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}(r, F) + S(r, F) + S(r, G).$$

Lemma 2.10. Let f(z), g(z) be two non-constant finite order meromorphic functions such that poles of f(z) are not zeros of f(z+c) and poles of g(z) are not zeros of g(z+c), F, G and V be defined as in (2.2), P(w) be defined as in (1.1) and n(>3), k(>0), $m(\ge 0)$ be three integers. Let c be a non-zero complex constant such that f(z) and g(z) are not periodic functions of period c. If $V \not\equiv 0$, F and G share 1 and ∞ IM, then

$$(n+m+k-5)\overline{N}(r,f) \le 2\overline{N}\left(r,\frac{1}{F}\right) + 2\overline{N}\left(r,\frac{1}{G}\right) + S(r,f) + S(r,g)$$

and

$$(n+m+k-5)\overline{N}(r,g) \leq 2\overline{N}\left(r,\frac{1}{F}\right) + 2\overline{N}\left(r,\frac{1}{G}\right) + S(r,f) + S(r,g).$$

ISSN 1027-3190. Укр. мат. журн., 2019, т. 71, № 7

Proof. Let z_0 be a pole of f(z) and g(z) with multiplicities p and q, respectively. By using hypotheses $V \not\equiv 0$, F and G share ∞ IM, pole of f(z) is not a zero of f(z+c) and a pole of g(z) is not a zero of g(z+c), we get z_0 is pole of F with multiplicity (n+m)p+k and pole of G with multiplicity (n+m)q+k.

Thus z_0 is zero of $\frac{F'}{F-1}-\frac{F'}{F}$ with multiplicity $(n+m)p+k-1\geq n+m+k-1$ and also z_0 is zero of $\frac{G'}{G-1}-\frac{G'}{G}$ with multiplicity $(n+m)q+k-1\geq n+m+k-1$, hence z_0 is zero of V with multiplicity at least n+m+k-1. Thus

$$(n+m+k-1)\overline{N}(r,f) \le N\left(r,\frac{1}{V}\right) \tag{2.3}$$

and

$$(n+m+k-1)\overline{N}(r,g) \le N\left(r, \frac{1}{V}\right). \tag{2.4}$$

By the lemma of the logarithmic derivative, we have

$$m(r, V) = S(r, f) + S(r, g).$$

Now consider

$$N\left(r, \frac{1}{V}\right) \le T(r, V) \le m(r, V) + N(r, V) \le N(r, V) + S(r, f) + S(r, g).$$
 (2.5)

Since F(z) and G(z) share the value 1 IM, zeros of F(z)-1 and zeros of G(z)-1 of different multiplicities contribute to poles of V and also since F(z) and G(z) share the value ∞ IM, the poles of F(z) and G(z) of different multiplicities contributes to zeros of V. Thus from (2.2) and (2.5), we deduce

$$N\left(r, \frac{1}{V}\right) \leq \overline{N}\left(r, \frac{1}{F}\right) + \frac{1}{N}\left(r, \frac{1}{G}\right) + \overline{N}_L\left(r, \frac{1}{F-1}\right) + \overline{N}_L\left(r, \frac{1}{G-1}\right) + S(r, f) + S(r, g).$$

$$(2.6)$$

Since F and G share 1 IM, by Lemma 2.9 and (2.6), we get

$$N\left(r,\frac{1}{V}\right) \le 2\overline{N}\left(r,\frac{1}{F}\right) + 2\overline{N}\left(r,\frac{1}{G}\right) + \overline{N}(r,F) + \overline{N}(r,G) + S(r,f) + S(r,g). \tag{2.7}$$

By Lemma 2.3, we obtain

$$\overline{N}(r,F) = \overline{N}\left(r, \frac{\left[f^n P(f) f(z+c)\right]^{(k)}}{a(z)}\right) \le$$

$$\le \overline{N}(r,f) + \overline{N}(r, f(z+c)) + S(r,f) \le 2\overline{N}(r,f) + S(r,f). \tag{2.8}$$

Similarly,

$$\overline{N}(r,G) \le 2\overline{N}(r,g) + S(r,g).$$
 (2.9)

From (2.7)–(2.9) and using that f(z) and g(z) share ∞ IM, we have

$$N\left(r,\frac{1}{V}\right) \leq 2\overline{N}\left(r,\frac{1}{F}\right) + 2\overline{N}\left(r,\frac{1}{G}\right) + 2\overline{N}(r,f) + 2\overline{N}(r,g) + S(r,f) + S(r,g) \leq$$

$$\leq 2\overline{N}\left(r,\frac{1}{F}\right) + 2\overline{N}\left(r,\frac{1}{G}\right) + 4\overline{N}(r,f) + S(r,f) + S(r,g). \tag{2.10}$$

It follows from (2.3) and (2.10) that

$$(n+m+k-1)\overline{N}(r,f) \leq 2\overline{N}\left(r,\frac{1}{F}\right) + 2\overline{N}\left(r,\frac{1}{G}\right) + 4\overline{N}(r,f) + S(r,f) + S(r,g),$$

i.e.,

$$(n+m+k-5)\overline{N}(r,f) \le 2\overline{N}\left(r,\frac{1}{F}\right) + 2\overline{N}\left(r,\frac{1}{G}\right) + S(r,f) + S(r,g).$$

Similarly,

$$(n+m+k-5)\overline{N}(r,g) \le 2\overline{N}\left(r,\frac{1}{F}\right) + 2\overline{N}\left(r,\frac{1}{G}\right) + S(r,f) + S(r,g).$$

Lemma 2.11 [4]. Let f(z) be a non-constant finite order meromorphic function. Let P(f) be as defined in (1.1) and c be a non-zero complex constant such that f(z) is not periodic function of period c. Then

$$(n+m-1)T(r,f) + S(r,f) \le T(r,f^n P(f)f(z+c)) \le (n+m+1)T(r,f) + S(r,f).$$

Lemma 2.12 [4]. Let f(z) be a transcendental finite order meromorphic function. Let k(>0) be integer satisfying n>k+5, c be a non-zero complex constant such that f(z) is not periodic function of period c and let P(w) be as defined in (1.1). Suppose that $a(z) (\not\equiv 0, \infty)$ is a small function with respect to f(z). Then $(f^n P(f) f(z+c))^{(k)} - a(z)$ has infinitely many zeros.

Lemma 2.13 [4]. Let f(z) and g(z) be two non-constant finite order meromorphic functions. Let P(w) be as defined in (1.1). Let k(>0), $m(\ge 0)$ be integers satisfying n>2k+m+5 and c be a non-zero complex constant such that f(z) and g(z) are not periodic functions of period c. If $\left[f^nP(f)f(z+c)\right]^{(k)} \equiv \left[g^nP(g)g(z+c)\right]^{(k)}$, then $f^nP(f)f(z+c) \equiv g^nP(g)g(z+c)$.

Lemma 2.14 [4]. Let f(z) and g(z) be two non-constant finite order meromorphic functions. Let c be a non-zero complex constant such that f(z) and g(z) are not periodic functions of period c and k(>0) be integer satisfying n>k+5. Let P(w) be as defined in (1.1). Suppose that $a(z)(\not\equiv 0,\infty)$ is a small function with respect to f(z) with finitely many zeros and poles. If $\left(f^nP(f)f(z+c)\right)^{(k)}\left(g^nP(g)g(z+c)\right)^{(k)}=a^2(z),\ f(z)$ and g(z) share ∞ IM, then P(w) reduces to a non-zero monomial, namely, $P(w)=a_iw^i\not\equiv 0$ for some $i\in\{0,1,\ldots,m\}$.

3. Proof of the theorems. 3.1. Proof of Theorem 1.1. Let F, G, H and V be as defined in (2.1) and (2.2). If $F_1 = f^n P(f) f(z+c)$ and $G_1 = g^n P(g) g(z+c)$, then F and G share 1 and ∞ IM. Suppose that $H \not\equiv 0$. Then according to Lemmas 2.7 and 2.8, $F \not\equiv G$ and $V \not\equiv 0$ and it follows that

$$T(r,F) \le N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + 2\overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{G}\right) + 7\overline{N}(r,F) + S(r,F) + S(r,G). \tag{3.1}$$

By Lemma 2.4 with p=2, Lemma 2.3 and (3.1), we obtain

$$T(r, F_{1}) \leq N_{2}\left(r, \frac{1}{G}\right) + 2\overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{G}\right) + N_{k+2}\left(r, \frac{1}{F_{1}}\right) + 7\overline{N}(r, F) + \\ + S(r, F) + S(r, G) \leq \\ \leq N_{k+2}\left(r, \frac{1}{G_{1}}\right) + k\overline{N}(r, G_{1}) + 2N_{k+1}\left(r, \frac{1}{F_{1}}\right) + 2k\overline{N}(r, F_{1}) + N_{k+1}\left(r, \frac{1}{G_{1}}\right) + \\ + k\overline{N}(r, G_{1}) + N_{k+2}\left(r, \frac{1}{F_{1}}\right) + 7\overline{N}(r, F) + S(r, F) + S(r, G) \leq \\ \leq (k+2)\overline{N}\left(r, \frac{1}{g}\right) + N\left(r, \frac{1}{P(g)}\right) + N\left(r, \frac{1}{g(z+c)}\right) + 2k\overline{N}(r, g) + \\ + 2(k+1)\overline{N}\left(r, \frac{1}{f}\right) + 2N\left(r, \frac{1}{P(f)}\right) + 2N\left(r, \frac{1}{f(z+c)}\right) + 4k\overline{N}(r, f) + \\ + (k+1)\overline{N}\left(r, \frac{1}{g}\right) + N\left(r, \frac{1}{P(g)}\right) + N\left(r, \frac{1}{g(z+c)}\right) + 2k\overline{N}(r, g) + \\ + (k+2)\overline{N}\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{P(f)}\right) + N\left(r, \frac{1}{f(z+c)}\right) + \\ + 14\overline{N}(r, f) + S(r, f) + S(r, g),$$

i.e.,

$$T(r, F_1) \le (3k+4)\overline{N}\left(r, \frac{1}{f}\right) + (2k+3)\overline{N}\left(r, \frac{1}{g}\right) + 3N\left(r, \frac{1}{P(f)}\right) + 2N\left(r, \frac{1}{P(g)}\right) + 3N\left(r, \frac{1}{f}\right) + 2N\left(r, \frac{1}{g}\right) + (8k+14)\overline{N}(r, f) + S(r, f) + S(r, g).$$

By Lemma 2.11, the above inequality reduces

$$(n+m-1)T(r,f) \le (3k+3m+7)T(r,f) + (2k+2m+5)T(r,g) + (8k+14)\overline{N}(r,f) + +S(r,f) + S(r,g).$$
(3.2)

Similarly,

$$(n+m-1)T(r,g) \le (3k+3m+7)T(r,g) + (2k+2m+5)T(r,f) + (8k+14)\overline{N}(r,f) + +S(r,f) + S(r,g).$$

$$(3.3)$$

From (3.2) and (3.3), we get

$$(n+m-1)(T(r,f)+T(r,g)) \le (5k+5m+12)(T(r,f)+T(r,g)) + 2(8k+14)\overline{N}(r,f) + S(r,f) + S(r,g),$$

i.e.,

$$(n-4m-5k-13)(T(r,f)+T(r,g)) \le 2(8k+14)\overline{N}(r,f)+S(r,f)+S(r,g). \tag{3.4}$$

Since $V \not\equiv 0$, F and G share 1 and ∞ IM, by Lemma 2.10, we have

$$(n+m+k-5)\overline{N}(r,f) \le 2\overline{N}\left(r,\frac{1}{F}\right) + 2\overline{N}\left(r,\frac{1}{G}\right) + S(r,f) + S(r,g). \tag{3.5}$$

By Lemma 2.4 with p = 1, (3.5) reduces

$$(n+m+k-5)\overline{N}(r,f) \leq 2(k+1)\overline{N}\left(r,\frac{1}{f}\right) + 2N\left(r,\frac{1}{P(f)}\right) + 2N\left(r,\frac{1}{f(z+c)}\right) + \\ + 2k\overline{N}(r,f) + 2k\overline{N}(r,f(z+c)) + 2(k+1)\overline{N}\left(r,\frac{1}{g}\right) + \\ + 2N\left(r,\frac{1}{P(g)}\right) + 2N\left(r,\frac{1}{g(z+c)}\right) + 2k\overline{N}(r,g) + \\ + 2k\overline{N}(r,g(z+c)) + S(r,f) + S(r,g) \leq \\ \leq 2(k+m+2)T(r,f) + 2(k+m+2)T(r,g) + 8k\overline{N}(r,f) + S(r,f) + S(r,g),$$

i.e.,

$$(n+m-7k-5)\overline{N}(r,f) \le 2(k+m+2)\left[T(r,f) + T(r,g)\right] + S(r,f) + S(r,g). \tag{3.6}$$

It follows from (3.4) and (3.6) that

$$[(n-4m-5k-13)(n+m-7k-5)-4(8k+14)(k+m+2)][T(r,f)+T(r,g)] \le S(r,f)+S(r,g),$$

which is a contradiction because n > 4m + 13k + 19. Thus, $H \equiv 0$.

Similar to the proof of Lemma 2.5 applied to the functions F and G, we obtain the following cases:

(i)
$$T(r,F) \le N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + N_2(r,F) + N_2(r,G) + S(r,F) + S(r,G),$$

- (ii) $FG \equiv 1$,
- (iii) $F \equiv G$.

By the condition on n, the case (i) is impossible.

By Lemma 2.14, the case (ii) is impossible.

Hence, we get only the case (iii), i.e., $\left[f^nP(f)f(z+c)\right]^{(k)}\equiv\left[g^nP(g)g(z+c)\right]^{(k)}$, then, by Lemma 2.13, we obtain $f^nP(f)f(z+c)\equiv g^nP(g)g(z+c)$, i.e.,

$$f^{n} \left(a_{m} f^{m} + a_{m-1} f^{m-1} + \ldots + a_{1} f + a_{0} \right) f(z+c) \equiv$$

$$\equiv g^{n} \left(a_{m} g^{m} + a_{m-1} g^{m-1} + \ldots + a_{1} g + a_{0} \right) g(z+c). \tag{3.7}$$

ISSN 1027-3190. Укр. мат. журн., 2019, т. 71, № 7

Let $h=\frac{f}{g}$. If h is a constant then substituting f=gh and f(z+c)=g(z+c)h(z+c) in (3.7), we deduce $a_mg^{n+m}\big(h^{n+m}h(z+c)-1\big)g(z+c)+a_{m-1}g^{n+m-1}\big(h^{n+m-1}h(z+c)-1\big)g(z+c)+\dots$ $\dots +a_1g^{n+1}\big(h^{n+1}h(z+c)-1\big)g(z+c)+a_0g^n\big(h^nh(z+c)-1\big)g(z+c)\equiv 0$, which implies $h^d=1$, where $d=GCD(n+m+1,\dots,n+m+1-i,\dots,n+1), a_{m-i}\neq 0$ for $i=0,1,\dots,m$. Thus $f(z)\equiv tg(z)$ for a constant t such that $t^d=1$, where $d=GCD(n+m+1,\dots,n+m+1-i,\dots,n+m+1-i,\dots,n+m+1), a_{m-i}\neq 0$ for $i=0,1,\dots,m$, which is the conclusion (1) of Theorem 1.1. If h is not a constant then f(z) and g(z) satisfy the algebraic difference equation $R(f,g)\equiv 0$, where $R(w_1,w_2)=w_1^n(a_mw_1^m+a_{m-1}w_1^{m-1}+\dots+a_0)w_1(z+c)-w_2^n(a_mw_2^m+a_{m-1}w_2^{m-1}+\dots+a_0)w_2(z+c)$, which is the conclusion (2) of Theorem 1.1.

3.2. Proof of Theorem 1.2. Substituting $a_1 = a_2 = \ldots = a_m = 0$ in P(w) and proceeding as in the proof of Theorem 1.1, we complete the proof of Theorem 1.2.

References

- 1. Banerjee A. Meromorphic functions sharing one value // Int. J. Math. Sci. 2005. 22. P. 3587 3598.
- Bergweiler W., Langley J. K. Zeros of differences of meromorphic functions // Math. Proc. Cambridge Phil. Soc. 2007. – 142. – P. 133 – 147.
- 3. Chiang Y. M., Feng S. J. On the Nevanlinna characteristic of $f(z + \eta)$ and difference equations in the complex plane // Ramanujan J. -2008. -16. -P. 105-129.
- 4. *Dyavanal R. S., Mathai M. M.* Uniqueness of difference-differential polynomials of meromorphic functions and its applications // Indian J. Math. and Math. Sci. 2016. 12, № 1. P. 11 30.
- 5. Hayman W. K. Meromorphic functions. Oxford: Clarendon Press, 1964.
- 6. Laine I. Nevanlinna theory and complex differential equations. Berlin: De Gruyter, 1993.
- 7. Li X. M., Li W. L., Yi H. X., Wen Z. T. Uniqueness theorems of entire functions whose difference polynomials share a meromorphic function of a smaller order // Ann. Polon. Math. 2011. 102, № 2. P. 111 127.
- 8. *Liu K.*, *Liu X. L.*, *Cao T. B.* Value distribution and uniqueness of difference polynomials // Appl. Math. J. Chinese Univ. 2011. Article ID 234215. 12 p.
- 9. Liu K., Liu X. L., Cao T. B. Some results on zeros and uniqueness of difference-differential polynomials // Appl. Math. J. Chinese Univ. 2012. 27, № 1. P. 94–104.
- 10. Liu K., Liu X. L., Cao T. B. Some results on zeros distributions and uniqueness of derivatives of difference polynomials // arXiv:1107.0773 [math.CV] (2011).
- 11. Luo X., Lin W. C. Value sharing results for shifts of meromorphic functions // J. Math. Anal. and Appl. 2011. 377. P. 441–449.
- 12. *Qi X. G., Yang L. Z., Liu K.* Uniqueness and periodicity of meromorphic functions concerning the difference operator // Comput. Math. Appl. 2010. **60**, № 6. P. 1739–1746.
- 13. Yang C. C., Hua X. H. Uniqueness and value-sharing of meromorphic functions // Ann. Acad. Sci. Fenn. Math. 1997. 22. P. 395 406.
- 14. Yang C. C., Yi H. X. Uniqueness theory of meromorphic functions. Kluwer Acad. Publ., 2003.
- 15. Yi H. X. Uniqueness of meromorphic functions and a question of C. C. Yang // Complex Var. 1990. 14. P. 169–176.
- 16. Yi H. X. Meromorphic functions that share three sets // Kodai Math. J. 1997. 20. P. 22 32.

Received 22.07.16, after revision — 20.04.17